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PREFACE

‘Biostatistics, far from being an unrelated mathematical science, is a discipline
essential to modern medicine – a pillar in its edifice’ (Journal of the American
Medical Association (1966) 195: 1145). Today, even more so than forty years ago,
anyone who wishes to read the biomedical literature intelligently, especially in the
areas of genetics and epidemiology, needs to understand the basic concepts of
statistics. It is our hope that this book will provide such an understanding to those
who have little or no statistical background and who need to keep abreast of new
findings in these two biomedical areas.

Unlike many other elementary books on statistics, the main focus of this book is
not so much on teaching how to perform some of the simpler statistical procedures
that may be necessary for a research paper, but rather on explaining basic concepts
needed to understand the literature. Many of the simpler statistical procedures
are in fact described, but computational details are included in the main body of
the text only if they help clarify the underlying principles. We have relegated to
the Appendix other details that, if included in the body of the text, would tend to
make it difficult for the reader to see the forest for the trees. If you wish to have
the details, read the notes in the Appendix concurrently, chapter by chapter, with
the rest of the book.

This book has been written at an elementary mathematical level and requires
no more than high school mathematics to understand. Nevertheless, you may find
Chapters 4 and 5 a little difficult at first. These chapters on probability and distribu-
tions are basic building blocks for subsequent concepts, however, and you should
study them carefully. The basic concepts of estimation and hypothesis testing are
covered by the end of Chapter 8, and this is followed in Chapter 9 by some more
advanced concepts – but always explained in simple language – that underlie many
types of analysis now commonly used by geneticists and epidemiologists. The next
three chapters cover special statistical methods that are widely used in both genetic
and epidemiological research. There is no attempt, on the other hand, to go into
any detail on the advanced statistical methods of analysis used in the special field
of genetic epidemiology – this would be a book in itself. In the last chapter we have
tried to review the most important concepts introduced in earlier chapters as they
relate to a critical reading of reports published in the literature.
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We have attempted to illustrate the statistical methods described with enough
examples to clarify the principles involved, but without their being so many and so
detailed that the reader is caught up in irrelevant and unnecessary technicalities.
We have tried to make these examples realistic and yet easy to grasp for someone
with a background in human genetics or epidemiology. Because genetic termino-
logy can be confusing to epidemiologists, we briefly introduce the terminology we
use in Chapter 1; similarly, for the geneticists, we also give in Chapter 1 a very brief
introduction to epidemiology. Apart from providing ideal examples in the applica-
tion of probability and statistics, genetics is a discipline that underlies all biology,
while epidemiology plays a central role in medical research. Detailed knowledge
of the molecular aspects of genetics or epidemiology is not, however, necessary to
understand the examples.

Each chapter after the first ends with a set of problems and at the end of the
book are further review problems. The answers to alternate problems are given at
the end of the book.

Robert C. Elston, M.A., Ph.D.
William D. Johnson, Ph.D.



CHAPTER ONE

Key Concepts

deductive reasoning, inductive reasoning
scientific method
statistical inference
variability, reliability of data
population data, population parameter,

sample data, sample estimate
autosomes, chromosomes,

X chromosome, Y chromosome
genotype, phenotype

alleles, polymorphism, mutation, variant
homozygous, homozygote, heterozygous,

heterozygote
locus, loci, diallelic, biallelic, haplotype
epidemic, epidemiology
factors, demographic, economic, genetic,

social, temporal
frequency of disease
built environment





Introduction: The Role
and Relevance of Statistics,
Genetics and Epidemiology

in Medicine

WHY BIOSTATISTICS?

In this book on biostatistics we study the application of statistical theory and methods
to analyze data collected by geneticists and epidemiologists. Such data are typically
collected to further the field of medicine. Accordingly, a genetic study to invest-
igate whether one or more genes might predispose people to an increased risk of
developing a specific disease would require an application of statistics to reach a
valid conclusion. Similarly, an application of statistics is required to reach a valid
conclusion when a clinical study is conducted for the purpose of investigating which
of two pharmaceutical treatments is preferred in managing patients with a specific
disease. The primary aim of this book is to provide an introduction to statistics with
enough detail to address issues such as these but without giving so many mathemat-
ical details that the reader loses sight of the end product. We begin by distinguishing
between two types of reasoning – inductive reasoning and deductive reasoning. The
former is a central theme in the application of statistical inference, but both types
of reasoning are used so often in everyday life that it is often difficult to realize that
they are really very different from each other.

When taking a clinical history, conducting a physical examination, or requesting
laboratory analyses, radiographic evaluations, or other tests, a physician is collecting
information (data) to help choose diagnostic and therapeutic actions. The decisions
reached are based on knowledge obtained during training, from the literature,
from experience, or from some similar source. General principles are applied to the
specific situation at hand in order to reach the best decision possible for a particular
patient. This type of reasoning – from the general to the specific – is called deductive

Basic Biostatistics for Geneticists and Epidemiologists: A Practical Approach R. Elston, W. Johnson
c© 2008 John Wiley & Sons, Ltd
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reasoning. Much of basic medical training centers around deductive reasoning.
Similarly, much of the training in any basic science is based on general scientific
laws and what we can deduce from them.

If it has not happened already, at some point in your training you must ask
yourself: How do we obtain the information about what happens in general? A
medical student, for example, will learn that patients with hypertension eventually
have strokes if their blood pressure is not controlled, but how did we obtain this
information in the first place? Does the rule always hold? Are there exceptions?
How long can the patient go untreated without having a stroke? Just how high
can the blood pressure level be before the patient is in imminent danger? These
questions are answered by ‘experience’. But how do we pyramid the knowledge we
glean from experience so that we do not make the same mistakes over and over
again? We save the information gathered from experience and refer to it to make
better judgments as we are faced by the need to make new decisions. Moreover, we
conduct experiments and comparative studies to focus on questions that arise in our
work. We study a few patients (or experimental animals), and from what we observe
we try to make rational inferences about what happens in general. This type of
reasoning – from the specific subject(s) at hand to the general – is called inductive
reasoning. This approach to research – pushing back the bounds of knowledge –
follows what is known as the scientific method, which has four basic steps:

1. Making observations – that is, gathering data.
2. Generating a hypothesis – the underlying law and order suggested by the data.
3. Deciding how to test the hypothesis – what critical data are required?
4. Experimenting (or observing) – this leads to an inference that either rejects or

affirms the hypothesis.

If the hypothesis is rejected, then we go back to step 2. If it is affirmed, this does not
necessarily mean it is true, only that in light of current knowledge and methods it
appears to be so. The hypothesis is constantly refined and tested as more knowledge
becomes available.

It would be easy to reach conclusions on the basis of observations, were it not
for the variability inherent in virtually all data, especially biological data. Genetics
and epidemiology are two basic sciences used in medical research to investigate
variability in data in an effort to understand the laws of nature. One of the most
common decisions a health professional must make is whether an observation on a
patient should be considered normal or abnormal. Is a particular observation more
typical of a person with disease or of a person without disease? Is the observation
outside the range typically found in a healthy person? If the patient were examined
tomorrow, would one obtain essentially the same observation? Obviously, observa-
tions such as blood pressure evaluations vary greatly, both at different times on the
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same patient and from patient to patient. Clinical decisions must be made with this
variability in mind.

Inductive inference is a much riskier procedure than deductive inference. In
mathematics, we start with a set of axioms. Assuming that these axioms are true,
we use deductive reasoning to prove things with certainty. In the scientific method,
we use inductive inference and can never prove anything with absolute certainty.
In trying to generalize results based on a group of 20 families, you might ask such
questions as: If 20 additional families were studied, would the results be very close to
those obtained on studying the first 20 families? If a different laboratory analyzed
the blood samples, would the results be similar? If the blood samples had been
stored at a different temperature, would the results be the same?

WHAT EXACTLY IS (ARE) STATISTICS?

Biostatistics is simply statistics as applied to the biological sciences. A statistic
(plural: statistics) is an estimate based on a sample of an unknown numerical quant-
ity in a population, such as the mean height of men age 20. Statistics (singular) is
a science that deals with the collection, organization, analysis, interpretation, and
presentation of information that can be stated numerically. If the information is
based on a sample from a population, we usually want to use this information to
make inductive inferences about the population. Perhaps the most difficult aspect
of statistics is the logic associated with these inductive inferences, yet all scientific
evidence is based on this type of statistical inference. The same logic is used, though
not always explicitly, when a physician practices medicine: what is observed for a
particular patient is incorporated with what has previously been observed for a large
group of patients to make a specific decision about that particular patient. Much
of the application of statistical methods centers around using sample data to estim-
ate population parameters such as the population mean, and to test hypotheses
about these parameters – such as the hypothesis that two or more populations have
identical means. If sample data provide a good representation of the sampled popu-
lation, then a good application of statistical methods usually leads to good estimates
of relevant parameters and good decisions about whether or not certain hypotheses
are tenable. As mentioned earlier, however, the obscuring effects of extraneous
sources of variability in research data create a difficult environment for making
statistical inferences. Statisticians have developed many procedures and formulae
for these purposes and they continue to search for methods that provide estimates
and statistical tests with improved properties and wider applicability.

Human health appears to be determined largely by genetic predispositions
and environmental exposures. New information about medicine and human health
is obtained by studying groups of people to investigate their genetic endowment
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and environmental conditions that may be in some way linked to their health.
Because there is great variability in genetic make-up and environmental expos-
ure in the human population, it is difficult to identify ‘silver bullet’ treatments
for all the many diseases that occur in our population. The problem is further
exacerbated by the fact that diseases seldom have a simple etiology, in that there
may be multiple causes and promoters of health problems. Despite the obscur-
ing effects of inherent variability and multi-factorial causation, there are many
general tendencies that lead to patterns in research data. By investigating these
patterns in samples of patients and their families, researchers are able to make
inductive inferences about a ‘population’ of patients to reduce the chance of dis-
ease, and to develop and improve disease intervention with the aim of advancing
healthy well-being. It is easy to see that sound medical research requires a careful
synthesis of expertise in many disciplines, including genetics, epidemiology, and
statistics.

REASONS FOR UNDERSTANDING STATISTICS

New scientific knowledge is gained from research. and support for the accuracy
of any claim to discovery of new knowledge is almost always gleaned from data
that measure investigative outcomes. The scientific pursuit of new wisdom lies in
a search for truth. All too often, a line of research takes a turn down a wrong path
because a scientist allows his preconceived notions to cloud objectivity. Statistical
principles provide an orderly and objective approach to collecting and interpreting
research data. In nearly all areas of research, the proper use of statistics is crucial
to the validity of the conclusions. Yet many students, especially those in the health
professions, tend to avoid learning statistics and some ask: ‘Why should I study
statistics?’ The statement ‘If I need a statistician, I will hire one’ is also common. But
health professionals are frequently faced with data on which they must base clinical
judgments. The reliability of the support data from genetic and epidemiological
studies plays a fundamental role in making good clinical decisions. You must be
able to distinguish between discrepant data and routine variability. As a layperson
and as a practitioner, you will be bombarded daily with statistics. To make correct
decisions based on the data you have, you must know where those data came from
and how they were obtained; you must also know whether conclusions based on
those data are statistically valid. Statistics are often misinterpreted, and Disraeli is
reputed to have said ‘There are lies, damned lies, and statistics’ (see Huff, 1954).
Hence, there is always a need for the proper use of statistics.

As a scientist you must have an inquiring mind and pursue new ideas with
passion, but you must also ‘listen’. You must ‘listen’ to the data and ‘hear’ what
your research outcomes are ‘saying’. Most investigators fully understand that if you
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use bad experimental technique you may be misguided by faulty outcomes. Many
fail to recognize, however, that it is equally important to use good technique and
judgment in the statistical analysis in order to reach valid conclusions.

In your scientific development, you will rely heavily on the literature for new
information that will change the way you view ‘what exactly is knowledge’ and the
directions that should be taken to further investigate new frontiers. It is important
that you be able to read published articles critically. You will need to understand
terms such as ‘p-value’, ‘significance level’, ‘confidence interval’, ‘standard devi-
ation’, and ‘correlation coefficient’, to mention just a few of the statistical terms
that are now common in the scientific literature. This book explains these con-
cepts and puts them to work in strategies that will help you distinguish fact from
fancy in everyday life – in newspapers and on television, and in making daily com-
parisons and evaluations. In addition, it goes beyond a rudimentary introduction
and provides the building blocks for developing an understanding of the concepts
that may be used in modern genetic and epidemiologic studies. After carefully
reading this book, you should have an appreciation of statistics so that you know
when, and for what purpose, a statistician should be consulted to raise the level
of quality of your research. The vanguard pathway for advancing knowledge rests
squarely on the scaffolds of sound research and the ability to communicate the find-
ings of that research effectively so that it is accepted by the scientific community.
No matter how eloquent the communiqué, the ultimate merit of new research is
judged by (1) the perceived impact factor of the journal it is published in, (2) its
subsequent frequency of citation in new peer-reviewed research, and (3) reports
of consistent (or inconsistent) findings by other researchers who attempt to rep-
licate original findings when addressing the same issues in their own work. When
the findings of a research investigation have a high impact on scientific thinking,
they come under the scrutiny of the most outstanding researchers in the area who
examine all the strengths and weaknesses, including whether those findings can be
independently replicated. Furthermore, you yourself must also be able to under-
stand and evaluate the scientific literature in an intelligent manner. Unfortunately,
many of the articles in the medical literature draw invalid conclusions because
incorrect statistical arguments are used. Schor and Karten (1966) found that most
analytical studies published in well-respected medical journals in 1964 were unac-
ceptable in that the conclusions drawn were not valid in terms of the design of the
experiment, the type of analysis performed, or the applicability of the statistical
tests used. Unfortunately, things were only slightly better 15 years later. Glantz
(1980) reported that about half of the articles published in medical journals that
use statistics use them incorrectly. More recently, Ioannidis (2005) investigated art-
icles published in 1990–2003 in three high-impact clinical journals that had been
cited in over 1000 other subsequently published peer-reviewed journals. Of 45
highly cited original clinical studies that claimed effective treatment interventions,
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results in only 20 were replicated by subsequent investigators, in 7 the same type
of effects were found but they were not as strong, in 7 the original results were
contradicted, and in 11 replicate studies were never reported. A number of pos-
sibilities were posited for the inconsistent or refuted findings, and this opened a
debate about the integrity of scientific research and the review process for public-
ation. One area of concern is the lack of excellence in the training of our future
generations of researchers. One specific shortcoming was discussed recently by
Windish et al. (2007). Although physicians rely heavily on findings reported in
journal publications and these findings are validated by those reports that support
their conclusions through the application of sound statistical principles, the authors
concluded that most of the medicine residents studied had insufficient know-
ledge of statistics to properly interpret the results published in clinical medicine
journals.

WHAT EXACTLY IS GENETICS?

Genetics is the study of the transmission of hereditary information from generation
to generation. The words ‘gene’ and ‘genetics’ both derive from the same root as the
word ‘generation’. With rare exceptions, each human cell nucleus contains 46 deeply
staining bodies, or chromosomes, that carry the hereditary information and, in the
strict sense, genetics is the study of how this information is transmitted from parents
to offspring. The chromosomes contain the genetic material deoxyribonucleic acid
(DNA), and the study of DNA, and how it is transcribed, translated and eventually
controls the development of the adult, is often nowadays also considered to be
genetics – molecular genetics. As a result, the terminology in genetics is changing
fast as more is learned about the processes involved. We therefore summarize here
the limited terminology we shall use in this book and how it may differ from what
is also commonly seen in the literature.

The concept of the gene is due to Mendel, who used the word ‘factor’. He
used the word ‘factor’ in the same way that we might call ‘hot’ and ‘cold’ factors,
not in the way that we call ‘temperature’ a factor. In other words, his factor, later
called a gene, was the ‘level’, or specific value, of the genetic factor. In the original
terminology, the four blood types A, B, O, and AB are determined by three genes
A, B, and O. Nowadays, however, it is common to talk of the ABO gene, and the
individual ‘levels’, A, B, and O, are simply called alleles, or variants, rather than
genes. The genes occur along the chromosomes, which are organized into 22 homo-
logous pairs of autosomes and two sex chromosomes, X and Y. Females have two
X chromosomes, males have an X and a Y chromosome. Except that the Y chro-
mosome has only a very short segment that is homologous to the X chromosome,
the alleles, or genes, similarly occur in pairs at specific locations, or loci (singular:
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locus) along the chromosomes. Thus, we may talk of a person with AB blood type
as having either the A and B genes or the A and B alleles at the ABO locus, which
occurs on a particular pair of autosomal chromosomes. To avoid confusion, we shall
as much as possible avoid the word ‘gene’ in this book. A locus will denote the
position at which two alleles of a particular gene can occur. If the two alleles are the
same, the person is homozygous (or a homozygote) at that locus; if different, the
person is heterozygous (or a heterozygote). There can be more than two alleles at a
particular locus in the population, but only two in each individual: these two alleles
comprise the individual’s genotype at that locus. If, at a particular locus, only two
alleles occur in the whole population, the locus is diallelic (this is the original term,
which we shall use; the etymologically less desirable term ‘biallelic’ is now often
also used).

The A, B, O, and AB blood types are phenotypes – what is apparent, the trait
that is observed – as opposed to the underlying genotypes, which may or may not
be deducible from the phenotype. The B blood type (phenotype), for example,
can result from either the BB or the BO genotype. We say that the B allele is
dominant over the O allele, or equivalently that the O allele is recessive to the B
allele, with respect to the B blood type (the phenotype). Note that ‘dominant’ and
‘recessive’ always denote a relationship between particular alleles with respect to a
particular phenotype, though it is not uncommon for one or the other, the alleles
or the phenotype, to be implicitly understood rather than explicitly stated. The A,
B, O, and AB blood types comprise a polymorphism, in the sense that they are
alternative phenotypes that commonly occur in the population. Different alleles
arise at a locus as a result of mutation, or sudden change in the genetic material.
Mutation is a relatively rare event, caused for example by an error in replication.
Thus the different alleles, alternatives that occur at the same locus, are by origin
mutant alleles. Many authors now (incorrectly) use the term ‘mutation’ for any rare
allele, and the term ‘polymorphism’ for any common allele.

Of the two alleles a person has at each locus, just one is passed on to each
offspring. The choice of which allele is transmitted is random, this being Mendel’s
first law, the law of segregation. Because each offspring has two parents, the number
of alleles at each locus is thus maintained at two (except for rare exceptions) in each
generation. A haplotype is the multilocus analogue of an allele at a single locus, that
is, a set of alleles, each from a different locus, that are inherited together from the
same parent. A DNA molecule is made up of many thousands of subunits, called
nucleotides, and a locus originally meant the location of a stretch of hundreds or
thousands of such subunits that comprise a gene. A nucleotide that is polymorphic in
the population is called a single nucleotide polymorphism (SNP, pronounced ‘snip’),
and the chromosomal location of a SNP is nowadays also often called a locus. To
stress that the word ‘locus’ is being used in its original sense, the location of a
sequence of SNPs that form a whole gene, the term gene-locus is sometimes used.
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WHAT EXACTLY IS EPIDEMIOLOGY?

An epidemic of a disease occurs in a group of people when an unusually large num-
ber in the group contract the disease. For many years, the term ‘epidemic’ (from the
Greek, literally, ‘upon the population’) was used in connection with acute outbreaks
such as an unusually large number of people infected with influenza or suffering
from vomiting and diarrhea associated with ingestion of contaminated food. How-
ever, for some time now it has been used to describe unusual occurrences of chronic
health conditions, such as excessive amounts of obesity, heart disease, and cancer
in a population. Epidemiology is the study of the frequency of disease occurrence
in human populations and subpopulations in search of clues of causation that may
lead to prevention and better management of disease. Factors typically used to
define subpopulations for epidemiological investigation include: (1) demographic
factors such as age, ethnicity, and gender; (2) social factors such as education level,
number of people in a household, and religious beliefs; (3) economic factors such
as household income, occupation, and value of the home; (4) temporal factors such
as birth order, time in years, and season of the year; (5) genetic factors such as
might be inferred from parents, sibs, and other relatives; and (6) environmental
factors such as related to behavior (e.g. diet, cigarette smoking, and exercise), the
built environment (e.g. industrial pollution, densely populated cities and air traffic
near large airports), and natural exposures (e.g. radiation from sunlight, pollen from
trees and unusual weather).

The occurrence of a disease is related to, or associated with, a factor if the
disease is found to occur more frequently in some subpopulations relative to other
subpopulations. For example, a condition such as obesity (the response) may be
associated with diet (the factor or predictor) if dietary habits and the amount of
obesity in some ethnic subpopulations differ from the dietary habits and the amount
of obesity in other ethnic subpopulations. Epidemiologists search for causes of dis-
ease by studying characteristics of associations between the disease and related
factors. The following are characteristic measures of association: (1) Strength of
the association – the larger the relative difference in measures of disease among
subpopulations that are defined by the levels or categories of a factor, the greater the
strength of the association. If we can demonstrate a dose–response type of gradi-
ent in the relationship, confidence in the strength of the association is enhanced.
(2) Consistency of the association – the association is confirmed in independ-
ent studies conducted by different investigators in other populations of subjects.
(3) Temporal correctness of the association – exposure to the factor precedes onset
of the disease. Alternatively, if we withdraw the exposure in a subpopulation, we may
be able to demonstrate a decreased risk of disease relative to a group that continues
to be exposed. As researchers confirm these characteristic measures of association
in different studies and across different populations, their belief increases that the
association may have a causal basis.
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HOW CAN A STATISTICIAN HELP GENETICISTS
AND EPIDEMIOLOGISTS?

Statistics is a vital component of the research process, from the earliest planning
stages of a study to the final presentation of its results. In view of the complexity
of many of the statistical methods now used in genetics and epidemiology, and
the proliferation of software that has been incompletely tested, the involvement
of a statistician in all stages of such a research project is often advisable. This
will enhance the efficiency of the study and the scientific credibility of its res-
ults. If a study has been improperly planned or executed, no amount of statistical
expertise can salvage its results. At the beginning of a study, the statistician’s
activities might include: (1) recommending study designs to meet the objectives
and to increase the amount of information that can be obtained; (2) estimat-
ing the number of subjects or families (sample size) required to achieve study
objectives; (3) helping develop efficient data-collection forms or websites; and
(4) recommending ways to monitor the quality of the data as they are being
collected. After the data have been collected and prepared for analysis, the statist-
ician can: (1) recommend the most appropriate methods of analysis, and possibly
do the analyses personally if the methods are esoteric; (2) interpret the findings
in understandable terms; and (3) review and contribute to the statistical con-
tent of any presentations and publications that report the results of the study.
Statisticians may also be consulted to help evaluate published papers and manu-
scripts, or to help prepare sections on experimental design and analysis for grant
applications.

Because statistical consultation is a professional collaboration, statisticians
should be included in research projects from their beginning. Also, because stat-
istical design and analysis are time-consuming activities, statisticians should be
informed well in advance of any deadlines. At the beginning of the study, you
should: (1) show the statistician exactly where and how the data will be collected,
preferably at the collaboration site; (2) describe the objectives of your study in
detail, because they are essential in planning a study design that will extract all
pertinent information as efficiently as possible; and (3) inform the statistician of
any relevant limitations, such as availability of financing or personnel, which are all
factors that must be considered in the study design. To clarify the terminology and
basic concepts in a field of interest, the researcher should provide the statistician
with background information in the form of basic articles and book chapters in the
area being investigated.

Once a strategy for your study has been jointly established, it must be followed
carefully, and any necessary changes in procedures must be discussed before they
are implemented. Even minor changes may affect the way data are analyzed, and in
some instances could invalidate an entire study. Although certain statistical methods
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may partially correct mistakes in study design, this is not always possible; it is
obviously expedient to avoid making such mistakes at all.

DISEASE PREVENTION VERSUS DISEASE THERAPY

The risk of developing many diseases may be increased significantly by poor
behavioral habits and environmental exposures. Obesity and cigarette smoking, for
example, have been linked to many health problems. However, genetic factors may
predispose to addictive behaviors such as overeating and cigarette smoking. There
is growing recognition that the infrastructure of our communities – the man-made
or ‘built’ environment – often influences our safety and health. Thus, researchers
continue to elucidate factors that may be linked to increased risk of disease and
to suggest possible interventions that may reduce this risk, or successfully manage
living with the disease once a person develops it. Medical treatments for disease
are continually being developed and improved. It has long been known that many
rare diseases are due to variants (mutant alleles) at single genetic loci – the so-called
monogenic diseases – and in many cases the environment is also involved. The rare
phenotype phenylketonuria, or phenylketones in the urine, for example, is caused
by a recessive mutant allele and a diet that includes phenylalanine. Without two
mutant alleles, or with a diet deficient in phenylalanine, there is no phenylketon-
uria. Nowadays studies are being conducted in which the genotypes of hundreds
of thousands of SNPs are compared between persons with and without a relatively
common disease, such as hypertension or diabetes, in order to determine whether
particular genotypes at several loci, or particular genotypes in combination with
particular behaviors, predispose to the disease. Any such predisposing genotypes
can be used to formulate a predictive genetic test that could be used for personalized
medicine.

A FEW EXAMPLES: GENETICS, EPIDEMIOLOGY
AND STATISTICAL INFERENCE

Opinion polls. We are all aware of the accuracy of projections made by pollsters
in predicting the outcome of national elections before many people have even
gone to the polls to cast their vote. This process is based on a relatively small but
representative sample of the population of likely voters. It is a classic example of
statistical inference, drawing conclusions about the whole population based on a
representative sample of that population.
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Waiting time. Some years ago the King Tut art exhibit was on display in New
Orleans. During the last few days of the exhibition, people waited in line for hours
just to enter to see it. On the very last day, the lines were exceptionally long
and seemed to be moving terribly slowly. One ingenious man decided to estim-
ate his expected waiting time as follows. He stepped off 360 paces (approximately
360 yards) from his position to the front of the line. He then observed that the
line moved 10 paces in 15 minutes. He projected this to estimate a movement of
40 paces per hour or 360 paces in 9 hours. The man then decided that 9 hours was
too long a period to wait in line. A man (one of the authors of this book) directly
behind this fellow, however, decided to wait and stood in line 91/2 hours before
seeing the exhibit!

Tuberculosis. About one-third of the world’s population is currently infected
with tuberculosis, a contagious disease of the lungs that spreads through the air.
When infectious people cough, sneeze, talk or spit, they propel tuberculosis bacilli
into the air. A person needs only to inhale a small number of bacilli to be infected.
Only 5–10% of people who are infected become sick or infectious during their
lifetime, suggesting a genetic susceptibility to the disease.

Smoking and disease. Today most health experts believe that smoking is bad
for the health – that it increases the risk of diseases such as cancer and heart
attacks, and has other deleterious effects on the body. Governments have taken
actions to modify or suppress advertising by the tobacco industry, and to educate the
public about the harmful effects of smoking. These actions were taken, however,
only after many independent studies collected statistical data and drew similar
conclusions. Although ignored for many years, it has now been established that
nicotine dependence has a genetic component.

Cholesterol and coronary artery disease. High-density lipoprotein (HDL) is a
carrier of serum cholesterol. High levels of HDL in the blood seem to be associated
with reduced risk of coronary artery disease so that it is called ‘good’ cholesterol.
Lp(a) is a genetic variation of plasma low-density lipoprotein (LDL). A high level
of Lp(a) is associated with an increased risk of prematurely developing athero-
sclerosis. The LDL receptor was discovered by studying the genetics of familial
hypercholesteremia.

Diabetes. There are two primary types of diabetes: type I (insulin-dependent
or juvenile-onset), which may be caused by an autoimmune response, and type
II (non-insulin-dependent or adult-onset). Type I diabetes must be treated with
insulin, usually by injection under the skin. Several genetic variants have been
discovered that predispose to type II diabetes.

Osteoporosis. Osteoporosis affects both men and women but is more common
among women. Although many genetic variants influence bone density in both
males and females, at different skeletal sites and in different age groups, it is likely
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that the magnitude of individual genetic effects differs in different populations and
in different environmental settings.

SUMMARY

1. The scientific method provides an objective way of formulating new ideas,
checking these ideas with real data, and pyramiding findings to push back the
bounds of knowledge. The steps are as follows: make observations, formulate
a hypothesis and a plan to test it, experiment, and then either retain or reject
the hypothesis.

2. Sexually reproducing species have somatic cells (body cells), which are diploid
[2n] (they have two sets of n chromosomes, one from the mother, one
from the father) or polyploid [Xn] (they have X sets of n chromosomes), and
gametes (reproductive cells) which are haploid [n] (they have only one set of
n chromosomes).

3. When parents conceive a child, a single cell is formed. This cell contains a
lifetime of information about the offspring provided by two sets of 23 chro-
mosomes for a total of 46 chromosomes. The father contributes one set of
22 autosomes and either a Y or an X chromosome, and the mother contributes
a second set of 22 autosomes and an X chromosome.

4. Alleles occur at loci (positions) on a chromosome. If the two alleles at a locus
are the same the person is homozygous at that locus, if they are different the
person is heterozygous. Alleles can be recessive or dominant with respect to
a particular phenotype, in which case the phenotype of the heterozygote is
indistinguishable from that of one of the homozygotes.

5. An organism in which both copies of a gene are identical – that is, have the
same allele – is said to be homozygous for that gene. An organism that has
two different alleles of the gene is said to be heterozygous. Often one allele is
dominant and the other is recessive – the dominant allele will determine which
trait is expressed.

6. A mutation is a change in the DNA sequence that occurs by error and a poly-
morphism is a set of phenotypes with a genetic basis; but these terms are often
used to mean a rare allele and a common allele, respectively. A haplotype is the
multilocus analogue of an allele at a single locus.

7. An epidemic of a disease occurs in a group of people when an unusually large
number in that group, or subpopulation, contract the disease. Factors typ-
ically used to define subpopulations for epidemiological investigation include
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demographic factors, social factors, economic factors, temporal factors, genetic
factors, and environmental factors.

8. Some characteristic indicators that suggest causation are: strength of the
association; consistency of the association; and temporal correctness of the asso-
ciation. As researchers confirm these characteristic measures of association in
different studies, their belief that the association may be causal increases.

9. Statistics deals with the collection, organization, presentation, analysis, and
interpretation of information that can be stated numerically. All data collec-
ted from biological systems have variability. The statistician is concerned with
summarizing trends in data and drawing conclusions in spite of the uncertainty
created by variability in the data.

10. Deductive reasoning is reasoning from the general to the specific. Inductive
reasoning is drawing general conclusions based on specific observations. Stat-
istics applies inductive reasoning to sample data to estimate parameters and
test hypotheses.
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CHAPTER TWO

Key Concepts

cause and effect
confounding
target population, study population, study

unit, census, parameter
probability sample:

random cluster sample
simple random sample
stratified random sample
systematic random sample
two-stage cluster sample

observational study:
cohort/prospective study
case–control/retrospective study
historical cohort/historical
prospective study
matched pairs
sampling designs

experimental study:
completely randomized
fractional factorial arrangement
randomized blocks
split-plot design
changeover/crossover design
sequential design

factorial arrangement of treatments
response variables, concomitant

variables
longitudinal studies, growth curves,

repeated measures studies, follow-up
studies

clinical trial, placebo effect, blinding,
masking

double blinding, double masking
compliance, adherence
quasi-experimental studies





Populations, Samples,
and Study Design

THE STUDY OF CAUSE AND EFFECT

Very early in your study of science you probably learned that if you put one green
plant in an area exposed to sunlight and another green plant in a dark area, such
as a closet, the plant in the dark area would turn yellow after a few days, whereas
the one exposed to sunlight would remain green. This observation involves a simple
experiment in which there are just two plants. Can we infer from it that we have
a cause (light) and an effect (green color)? Will the same thing happen again?
We might put several plants in sunlight, and several in a closet, and we might
repeat the experiment on many different occasions, each time obtaining the same
result. This would convince us that what we observed was not pure coincidence, but
can we be sure that it is the light that causes the green color (or, conversely, darkness
that causes the yellow color)? If the closet is always cooler than the sunlit areas,
the color change could be simply due to the cooler temperature. Clearly such an
experiment – in which temperature is not carefully controlled – cannot distinguish
between lack of sunlight and cooler temperature as the cause of the color change.
In this situation, we say there is confounding – the effect of light is confounded
with that of temperature. Two factors in a study are said to be confounded when it is
not possible to distinguish from the study their separate potentially causal effects.
In this chapter, we are going to discuss ways of designing studies with appropriate
safeguards against confounding and other pitfalls, so that we can be more certain
about making correct inferences about causes and effects. We shall see that in many
cases it is just not possible to design the perfect study and we must always be aware
of the possibility of confounding.

Much of genetics and epidemiology is concerned with the study of disease –
identifying the cause of disease with a view to preventing disease by intervention
and treating disease to minimize its impact. Unfortunately, most diseases have a
complex pathogenesis, and so it is not easy to describe the underlying process. In
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the simplest situation, factor A causes disease X. In more complex situations, disease
X is caused by multiple factors, say factors A, B, C, and D, or factor A may cause
more than one disease. Factor A may cause disease X only in the presence of factor
B, so that if either factor A or factor B is present alone, no causal effect can be
observed. In another instance, factor A could initiate disease X, but factor B could
accelerate or promote the disease process once it is initiated. On the other hand,
disease X could influence factor A, whereas factor A might have no influence on the
disease. The time of exposure to possible causal factors is another consideration.
Some patients might have more than one disease at the same time, and these
diseases might be associated with some of the same causal factors. Moreover, it is
not always obvious that a disease is present, especially in the pre-clinical or early
clinical stages.

Because of these many possibilities, the determination of disease causation
may be complex, and therefore it is essential that studies be carefully designed.
Above all, it is important to realize that, in our attempt to push back the bounds
of knowledge, we are searching for truth. Truth remains constant and it has a way
of making itself evident. The investigator must therefore be objective and must
not discard data that are inconsistent with expectations or otherwise manipulate
findings under the guise of saving the time required for additional investigation. All
too often we are misled by reported findings only to discover later that researchers
were not careful and objective in their research.

In any good scientific study the objectives will be clearly stated, including
specific hypotheses to be tested and effects to be estimated. For example, the
objectives might be to

(i) identify a group of men with elevated serum cholesterol levels;
(ii) reduce the serum cholesterol levels in these men by administering a treatment,

say drug A;
(iii) determine whether a reduction in serum cholesterol levels over a 5-year period

reduces the risk of developing coronary heart disease;
(iv) determine whether drug A has adverse side effects that outweigh any reduction

in the risk of coronary heart disease.

Thus, the specific research hypothesis to be tested is: using drug A over a 5-year
period, to lower the serum cholesterol levels of men with elevated levels, reduces
their risk of developing coronary heart disease. The specific effects to be estimated
are the amount of reduced risk and the amount of adverse reaction to the drugs.
We note that a side effect is not necessarily adverse. Moreover, adverse experiences
may be caused by factors other than the experimental treatment or may occur
only in those carrying specific genetic variants. Adverse drug reactions include
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such symptoms as nausea, vomiting, diarrhea, abdominal pain, rash, drowsiness,
insomnia, weakness, headache, dizziness, muscle twitching, and fever.

At the outset, definitions of terms should be specified. For example, coronary
heart disease might be defined as myocardial infarction or a history of angina, but
this definition in turn requires definitions of myocardial infarction and angina. We
also need to define what is meant by an ‘elevated’ serum cholesterol level. These
considerations will determine which persons enter the study, and hence the persons
for whom results of the study will have relevance. If the definitions of these terms
are not clearly documented, it might be difficult to apply consistent criteria in
deciding which persons are eligible for study. If persons who are free of coronary
heart disease are entered into the study, the effects of a treatment aimed at this
disease will be diluted. Similarly, if only persons with the most severe disease are
entered, the effect of treatment as it applies to the general population might be
exaggerated. We now turn to a general discussion of how the inferences we wish
to make are limited by the manner in which our study units are selected. (In the
example we have just considered, each ‘study unit’ is a person with an elevated
serum cholesterol level.)

POPULATIONS, TARGET POPULATIONS
AND STUDY UNITS

One of the primary aims of statistics is to help draw objective conclusions that
pertain to a larger group than the one for which data are available. You might want,
for example, to compare two treatments for angina. Obviously, you cannot give
the treatments to all patients with angina, but you can study a small group of such
patients. You would then try to generalize your conclusions based on the results
from that small group to a larger group of patients – perhaps even to most patients
with angina. Similarly, it would not be practical to study all persons with elevated
serum cholesterol levels, but we would hope to learn something relevant to all such
persons on the basis of an experiment performed on a small group, or sample.

In these examples, the set of all angina patients, or the set of all persons with
elevated cholesterol levels (the word ‘elevated’ being precisely defined), would be
the population about which we wish to make inferences. The population is made up
of study units (the units we study from the population) – which in these examples are
angina patients or persons with elevated cholesterol levels, respectively. Although it
seems obvious in these examples that we are studying people, and that these people
make up specific populations, the situation is not always this clear. The population
of interest may, for example, be made up of blood samples or tissue specimens,
each such sample or specimen being a study unit. We often use animal models in
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our initial investigations of an area of human research, and so the study unit may
be a rat, a hamster, or a dog. In genetic studies, the study unit may be a family.

The important point to remember is that, in statistics, a population is the group
of all study units about which a particular investigation may provide information.
The study units make up the population, and the population about which we wish to
make inferences determines what is meant by a study unit. Suppose, for example,
that we are interested in the functioning of the muscle cells of patients with myotonic
dystrophy, an inherited disorder in which the patient’s muscles contract but have
decreased power to relax. We might take two muscle biopsies from each of five
such patients and divide each biopsy into three aliquots, or parts, making a total of
30 aliquots in all, on each of which we make a measurement. But, if the population
about which we wish to make inferences is the population of patients with myotonic
dystrophy, our sample contains only five study units – on each of which we have
the measurements made on six aliquots. If we wish to make inferences about all
the (theoretically) possible biopsies that could be taken from one particular patient,
then each biopsy is a study unit and we have a sample of only two such units on any
one patient. If we wish to make inferences about families in which a genetic disease
is segregating, then the families, not the family members, are the study units. It is
a common error to believe that increasing the number of measures taken on any
one study unit is equivalent to increasing the number of study units sampled from a
population. If our experiment with the green plants had involved only two plants –
one in the light and one in the dark – then, because we were interested in making
inferences about plants, only two study units were in the experiment. This number
is not increased to 20 by noting that each plant has 10 leaves and then recording
the color of each leaf. We must carefully distinguish between multiple study units
and multiple measures on a single study unit – a distinction that is intimately tied
to the population about which we wish to make inferences.

We must also carefully distinguish between the target population and the study
population. The target population is the whole group of study units to which we are
interested in applying our conclusions. The study population, on the other hand,
is the group of study units to which we can legitimately apply our conclusions.
Unfortunately the target population is not always readily accessible, and we can
study only that part of it that is available. If, for example, we are conducting a
telephone interview to study all adults (our target population) in a particular city,
we do not have access to those persons who do not have a telephone. We may
wish to study in a particular community the effect of drug A on all persons with
cholesterol levels above a specified value; however, short of sampling all persons
in the community, only those persons who for some reason visit a doctor’s office,
clinic, or hospital are available for a blood sample to be taken. Thus, we have a study
population of accessible study units and a target population that includes both the
study population and the inaccessible study units. Those study units that are not
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readily accessible may or may not have the same characteristics as those of the target
population. Their exclusion from the study population means that inferences made
about the study population need not necessarily apply to the target population. As
we shall note later, when families are the study units, it can be very difficult to match
the study and target populations, or even to define the study population.

There are many ways to collect information about the study population. One
way is to conduct a complete census of the population by collecting data for every
study unit in it. The amount of money, time, and effort required to conduct a
complete census is usually unreasonable. A more practical approach is to study
some fraction, or sample, of the population. If the sample is representative of the
population, then inferences we make from the sample data about the population will
be correct. The term statistic is used to designate a quantity computed from sample
data, and the term parameter is used to designate a quantity that is characteristic
of the population. If the sample is representative of the population, descriptive
statistics will give accurate impressions of the corresponding parameters of the
population. Because our interest is in estimating parameters and testing hypotheses
about parameters of the population, special efforts should be made to obtain a
representative sample. Haphazard samples, or samples selected on the basis of
being easy to collect, are rarely representative of the population. We will now first
describe methods of sampling a population that can be used in the simpler situations
and that usually lead to representative samples.

PROBABILITY SAMPLES AND RANDOMIZATION

In order to make the kinds of inferences we discuss in later chapters, we should
ideally select well-defined probability samples, in which every unit in the population
has a known probability of being included in the sample. Although this may often be
impossible, a clear understanding of what can be done in the simplest of situations
will help you appreciate the problems we face when conducting epidemiological
and genetic studies. The most elementary type of probability sample is the simple
random sample, in which every study unit in the population is equally likely to be
included in the sample. However, it is often better to take another kind of probabil-
ity sample. Suppose, for example, we take a simple random sample of all individuals
in a community, and it just happens, by chance, that there are no women in our
sample. Gender might be an important factor in what we are studying and, if this
were the case, we would have obtained a sample that may be seriously deficient. To
overcome this possibility, we take a stratified random sample – a sample obtained by
separating the population study units into nonoverlapping groups, called strata, and
then selecting a simple random sample from each stratum. Thus, the population is
first divided by gender (the two strata), and a random sample is then taken from
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each stratum. In this way we can ensure that each gender is represented in the
sample in proportion to its distribution in the population. Similarly, we might strat-
ify the population on the basis of age, socioeconomic status, health status, and so
forth, before taking a simple random sample of a predetermined size from each
stratum.

One approach to selecting a random sample is to put the name, number, or
some other identifier for each study unit in the population into a container, such as
a hat, mix the identifiers thoroughly, and then select units (i.e. identifiers) one at
a time until the required sample size has been attained. This procedure, however,
has practical limitations. It may not be possible to obtain a thorough mixing, and
it may be impractical to write down the identifier for every unit in the population
on a separate piece of paper. However, provided we have a list of these identifiers
(such as a list of hospital numbers or names of all patients who during a period of
time have a particular disease, or a list of all residents in a community), a sequence
of random numbers can be used to pick the sample. Thus, if our list contains
10,000 names, a 1% random sample can be selected by obtaining a sequence of 100
random numbers between 1 and 10,000, and using those numbers to indicate the
positions in the list of those persons who are to form the sample. Tables of random
numbers have been published for this purpose. We would start at an arbitrary place
in the table and then take as our random numbers the next 100 sets of four digits
that appear successively in the table. The four digits 0000 would be interpreted as
10,000, and in the unlikely event that the same number is obtained twice, another
number would be taken. There are also computer programs that generate pseudo-
random numbers, numbers that appear to be random but are in fact produced by a
well-defined numerical algorithm. The fact that they do not produce truly random
numbers is usually of little consequence when a single sample is being selected for
a particular study.

A simpler way to select a sample from a list is to take what is called a systematic
random sample. Here, we randomly select a number between 1 and k – where 1/k
is the fraction of study units in the population we wish to have in our sample – and
then select every kth unit in the list. This type of design is often used in selecting
patients from a large clinic on the basis of hospital charts. We might study every 1 in
20 charts, for example, simply selecting a random number between 1 and 20, say 16,
and studying the 16th, 36th, 56th, . . . chart. The disadvantage of this kind of sample
is that the order of the study units on the list may have a periodic pattern, in which
situation we may obtain an unrepresentative sample. Provided we can be sure that
this is not the situation, however, a systematic random sample is a conveniently
simple way to obtain an approximately random sample.

Often the study units appear in groups, and so we take a random sample of
clusters or a random cluster sample. The physicians working in a hospital could be
considered a cluster. Thus, we could sample hospitals (clusters) and interview every
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physician working in each hospital selected in the sample. A two-stage cluster sample
is obtained by first selecting a sample of clusters (stage one) and then selecting a
sample of study units within each cluster (stage two). In this situation, we really
have two different study units, because the clusters themselves can be considered
as individual study units in the population of all such clusters. As we shall see in
Chapter 10, there are special methods of analysis for this kind of situation.

OBSERVATIONAL STUDIES

So far, we have considered the problem of sampling study units from the population,
and we have seen that different ways of doing this, or different sampling designs, are
possible. The sampling design is usually critical to the interpretation of observational
studies, that is, studies in which the researcher merely ‘observes’ the study units,
making one or more measurements on each.

There are many types of observational studies in epidemiological investiga-
tions – for example, to determine the prevalence of disease, or to determine the
population distribution of a given trait, such as blood pressure. Two types of obser-
vational studies that we shall discuss in more detail provide different approaches
to investigating the cause of disease. The first approach is to identify a sample of
persons in whom the suspected cause is present and a second sample in whom that
cause is absent, and then compare the frequency of development of disease in the
two samples. Studies that proceed in this manner are called cohort, or prospective,
studies. A cohort is a group of people who have a common characteristic; the two
samples are thus cohorts, and we observe them ‘prospectively’ for the occurrence
of disease. We might, for example, identify one cohort of smokers and one cohort
of nonsmokers, and then observe them for a period of time to determine the rate
of development of lung cancer in the two groups.

The other approach is to identify a sample of patients who have the disease
of interest (cases) and a second sample of persons who do not have the disease
(controls), and then compare the frequency of possible causes of the disease in
the two groups. These are called case–control, or retrospective, studies. They are
retrospective in that we ‘look back’ for possible causes. Thus, we might identify a
group of lung-cancer patients and a group of lung-cancer-free subjects, and then
study their past history relative to tobacco smoking habits.

The difference between cohort and case–control studies is in the selection
of the persons (the study units) for study. In a cohort study, persons are selected
who are initially free of disease, and we determine disease frequency over some
period of time, in the presence or absence of factors suspected of being associated
with causing the disease. On the other hand, in a case–control study, persons are
selected on the basis of presence or absence of the disease, and we determine
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the frequency of possible causal factors in their past histories. In both types of
observational studies there is always the possibility that confounding factors are
present. It is known, for example, that smokers tend to drink more coffee than
nonsmokers. Thus, any association found between smoking and lung cancer could
in theory merely reflect a causal link between coffee drinking and lung cancer.
Provided the potential confounding factors can be identified, methods of analysis
exist to investigate this possibility. The major drawback to observational studies is
that there may be unidentified confounding factors.

In cohort studies, persons are usually selected at the time the study is star-
ted and then followed over time. Existing records alone, however, can be used to
conduct a cohort study. The groups are established on the basis of possible causal
factors documented at an early point in the records, and disease frequency is then
established over a subsequent period in the same existing records (e.g. work records
at an industrial plant). Such a study, even though it is conducted retrospectively,
is called a historical cohort, or historical prospective, study. The important point
is that the outcome (disease or not) is determined prospectively in relation to the
time in the record at which the samples are chosen.

The source of cases in most case–control studies is provided by the patients
with the disease of interest who are admitted to a single hospital or to a group of
hospitals during a specific interval of time. The controls are often patients admit-
ted to the same hospitals during the same interval of time for reasons other than
and unrelated to the disease under study. Alternatively, instead of such hospit-
alized controls, an effort may be made to obtain population-based controls. The
type of controls used can play a critical role in the interpretation of the results,
because hospitalization per se (regardless of a person’s status with respect to the
disease being studied) may be a confounding factor related to the putative causal
factors.

To obtain a group of controls that is comparable to the cases, the controls are
often matched to the cases with respect to extraneous variables. Thus, for example,
as a particular case is entered into the study, one or more persons of the same gender
and race, and of similar age and socioeconomic status, are identified and entered
into the control group. We say that the cases and controls have been matched for
gender, race, age (within a specified interval, e.g. within 5 years) and socioeconomic
status. A matched pair design, implying that there is one control matched to each
case, is common.

The case–control study design is frequently used to explore simultaneously
a number of possible causes of disease. Such a study can usually be conducted
from existing records and is therefore relatively inexpensive. Furthermore, it can
be conducted in a reasonably short time. Often the purpose of a case–control study
is to learn enough about the potential causes of a disease of interest to narrow
the range of possibilities. Then a prospective study, with a small number of clearly
defined hypotheses, can be planned and conducted.
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FAMILY STUDIES

It is beyond the scope of this book on basic statistics to discuss the special methods
needed to design and analyze family studies, but an overview of the various designs,
their purposes and their problems, is in order. Family studies are observational
studies in which the study units are families, and this poses specific problems. The
simplest family structure is a pair of relatives, such as a pair of siblings. Other
structures that often comprise the study units are parent–offspring trios, larger
sibships and nuclear families (two parents and their offspring). The sibships and
nuclear families collected in a sample are typically of different sizes, reflecting the
target population. Unfortunately, except in the case of sibships, it is difficult or
impossible to define a target population of distinct study units prior to sampling.
Suppose, for example, the study units are nuclear families. Every person potentially
belongs to at least two different nuclear families: one or more as a parent and one
as an offspring. A person with two spouses can belong to three nuclear families.
This problem is exacerbated when the study units are larger families including, for
example, aunts, uncles and grandparents. Thus, it is usually impossible to define a
target population of distinct study units from which to sample – rather, the way the
study units are selected for study implicitly defines the study population and we
must assume this represents the target population.

In conducting a study to determine whether there is any genetic component
among the causal factors for a disease, four questions have typically been posed.
First, is the disease familial? Second, if so, can we detect a Mendelian pattern of
segregation? Third, if so, can we determine the approximate genomic location of the
segregating locus involved? Fourth, if so, can we determine the particular variant(s)
that causes the disease? Designing family studies to answer this series of questions
has been very successful in elucidating rare monogenic diseases (i.e. diseases that are
caused by variants at a single gene-locus), but has not been successful in the case of
diseases with a more complex etiology. The first two questions can be satisfactorily
answered only by studying families, and the third question has been most easily
answered by studying families. However, if the disease is rare, it makes little sense
to take a random sample of families – the vast majority of such families will be
noninformative. For example, one of the most common monogenic diseases is cystic
fibrosis, which typically affects only about 1 in 1500 to 2000 persons. Even if the
disease occurs in 1% of the population, which is the case for schizophrenia, only 1%
of a random sample of families would be informative. For this reason it is common
practice to study the families of persons who come to a hospital because they have
the disease of interest. Such persons, who independently bring their family to the
attention of the researcher, are called probands and special statistical methods are
required when study units are sampled, or ascertained, in this way. Ascertainment
sampling refers to the sampling procedure in which a person who has the particular
trait we wish to study causes the family to enter the study sample.
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In a family-matched case–control study, cases are sampled from a well-
defined population and the controls are relatives of the cases, often the siblings. In
such a study, it is important for the relatives to be a representative sample from the
same population. We define the proband sampling frame as the population of per-
sons who, whether they have the disease or not, are similarly available for sampling.
Thus, the control relatives must come from the same proband sampling frame and
must have the same distribution of other nongenetic factors, such as gender, age and
socioeconomic status, that might affect their susceptibility to disease. Such a study,
especially when the whole family of the case is sampled, is often called a nested
family study. It is analogous to a simple case–control study if we study the family
members for past occurrence of the disease, but to a cohort study if we study them
for future occurrence of a disease. As in the nonfamily situation, existing records
alone can be used to conduct such a study. The cases are selected at an early point
in the records, and disease frequency among their family members is then estab-
lished over a subsequent period in the same existing family study records. Such
a study could be aptly called a historical cohort, or historical prospective, family
study. However, these terms are not commonly used for family studies.

When families are ascertained through probands, the resulting sample can be
considered to be a stratified random sample of families, the strata being determined
by the family structures and the distribution of the trait. We are then faced with the
problem of rarely being able to take a simple random sample of a predetermined
size from each stratum, with the result that we may have to restrict the kinds of
inferences we can make. Unless the study unit is a simple nuclear family or a sibship,
the number of strata may be very large and our sample may have very few study
units in each stratum. If the study unit is a sibship, then the different structures are
completely defined by the number of sibs in the sibship. Suppose we have a sample
of sibships and the distribution of their sizes is representative of the sibship sizes in
the population. In this situation, it might be thought that it would be straightforward
to make inferences to the population of all sibships. However, if the sibships are
ascertained because of their containing a sib who has a disease, the stratum of
sibships that contains no affected members is missing. Further difficulties arise if
we do not have a completely random sample of all the sibships with at least one
affected sib. It may happen, for example, that a family is more likely to enter the
sample if it contains more affected sibs. Methods have been developed to deal with
this situation, but they typically depend on assumptions that are difficult to verify.

EXPERIMENTAL STUDIES

In experimental studies, the researcher intervenes (‘experiments’) in some way to
affect the manner in which the study units (in this case often called ‘experimental
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units’) respond. The study units are given some stimulus, or treatment, and then a
response is observed. Because the experimenter is in control of how the treatments
are assigned to the study units, experimental studies can be designed in such a
way that we can make precise statements about the inferences we make. For this
reason we shall often use experimental studies to illustrate statistical principles.
For example, our study units could be patients with the common cold, and the
treatment could be a drug that we believe may be a cure for the common cold.
We give the drug to a sample of such patients, and 2 weeks later observe that
virtually none of them has a cold any more. This is, in fact, an experimental study,
but does it allow us to conclude that the drug is a cure for the common cold? It
clearly does not, because we would expect the same result even if the patients
had not received the drug. We all know that common colds tend to go away after
a couple of weeks, whether or not any drugs are taken. This example illustrates
the very simple and obvious principle that if a result follows a particular course
of action, it does not mean that the course of action necessarily causes the result.
Studies of treatment efficacy are often plagued by ignoring this simple principle –
that in many cases, time alone is sufficient to ‘cause’ a cure or an amelioration of
a disease.

For time to be eliminated as a possible confounding factor, experimental stud-
ies must have at least two treatment groups. The groups are compared with each
other after the same amount of time has elapsed. If there are two groups, one will
be given the treatment being investigated (the active treatment), and the other, the
control group, may be given no treatment or an inactive placebo. We say there are
two different treatment groups, because ‘no treatment’ is in itself a type of treat-
ment. If it would be unethical not to treat the patient at all, the two treatments
could be a new drug we are investigating and a control treatment that has been
(until now) the standard treatment for such patients. In pharmacogenetic studies,
the two groups could comprise those who carry and those who do not carry a par-
ticular genetic variant, to determine if they respond differently to a particular drug.
In this case we could call the presence of the variant a ‘treatment’. Thus, the two
possible ‘treatments’ are presence of a particular genetic variant versus its absence –
but it should be carefully noted that the presence of a particular genetic variant is
an ‘observed’, rather than an experimental, treatment. There may be more than two
groups – one being given the new treatment and two or more others being given
two or more other competing treatments for the disease; or we may have patients
carrying no genetic variant at a gene-locus and the presence of several different
variants at that locus. The way in which the study units are assigned to the various
treatment groups, together with any relationships there may be among the different
treatments, determines what is known as the experimental design.

Careful randomization is an essential component of any sound experimental
design. Ideally, all of the study units in an experiment should be obtained from the
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target population using an element of randomization. But this is usually impractical,
especially if the ‘treatment’ is the presence of a genetic variant, and the sample of
study units used is often not at all representative of the target population. Never-
theless, randomization plays an important role in the allocation of study units to
the various treatments of experimental studies. Suppose, for example, that patients
with a specific disease are assigned to one of four treatments and that, after a suit-
able period of observation, the treatment groups are compared with respect to the
response observed. Although the patients studied might be representative of those
seen at a particular clinic, they are unlikely to be representative of all patients with
the disease of interest (the target population). But if the patients are assigned to
the treatments in such a way that each patient is equally likely to receive any one of
them, a fair comparison of the four treatments is possible. Thus, the patients should
be randomly assigned to the treatment groups, as this will enhance the chances of
a fair distribution of the good- and poor-risk patients among the four groups. If
32 patients are available, they can each be given a number, the 32 numbers written
on separate pieces of paper, shuffled, and then randomly sorted into four treatment
piles. A table of random numbers could also be used for the same purpose. This kind
of randomization is, of course, impossible when comparing the effects of carrying
specific genetic variants.

It cannot be stressed too much that without a proper randomization procedure,
biases – wittingly or unwittingly – are almost bound to result. If we had 32 mice
in a cage to be assigned to four different treatments, it would not be sufficient
simply to reach in and pick out eight ‘at random’ for the first treatment, eight ‘at
random’ for the second, and so on. An obvious bias occurs with this procedure
in that the last group will consist of those mice that are less easy to catch, and
the first group of those easiest to catch. Random allocation of study units to the
treatment groups is an automatic safeguard against possible confounding factors.
This is an essential difference between any observational study and a well-conducted
experimental study (i.e. an experimental study in which there is random allocation
of study units to treatments). Suppose that, in a pharmacogenetic study, a particular
genetic variant is present only among persons with a certain genetic ancestry. Then
that genetic variant will necessarily be completely confounded with ancestry and
a method must be sought (perhaps stratifying on genetic ancestry) that takes account
of such confounding.

Many types of experimental designs are available that involve an element of
randomization. The main reason for choosing one design over another is to save
the experimenter money, time, and effort, while at the same time ensuring that
the objectives of the study can be met. It will be helpful to review very briefly a
few of the most common experimental designs. A completely randomized design
is one in which each study unit has the same probability of being assigned to any
treatment group under consideration. Thus, if three treatments, A, B, and C, are
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being investigated, then each study unit would have a 1/3 probability of being
assigned to any one of the three treatment groups.

A randomized block design is one in which the study units are first divided
into nonoverlapping ‘blocks’ (sets of units, or strata) and then randomly assigned
to the treatment groups separately within each block. Consider, for example, an
experiment in which a group of patients is separated by gender to form two blocks.
The male patients are randomly assigned to the treatment groups (using a com-
pletely randomized design approach), and then the female patients are separately
randomly assigned to the treatment groups. In this way, if patients of one gender
always tend to give a better response, this ‘gender effect’ can be ‘blocked out’ in the
sense that treatments are compared within the blocks of male and female patients.
Provided the treatment differences are similar among the male and among the
female patients, it is possible to pool the results from the two genders to obtain
an overall comparison of treatments that is not obscured by any gender effect. In
family studies, it is sometimes possible to consider the families as blocks, to allow
for family-to-family heterogeneity.

The split-plot design involves randomly assigning units (‘whole plots’) to treat-
ment groups and then randomly assigning subunits (‘split plots’) to a second kind
of treatment group. (The use of the term ‘plot’ arose from agricultural experiments
in which each experimental unit was a plot in a field.) For example, patients (whole
plots) with advanced diabetes might be randomly assigned to different treatments
for diabetes and then their eyes (the split plots) might be randomly assigned to
different treatments to correct eyesight. As a second example, female mice (whole
plots) might be randomly exposed to some experimental drug and their offspring
(split plots) might be randomly assigned to a second treatment.

The changeover, or crossover, design is used, especially in animal and human
studies, in an effort to use the study unit (patient) as his or her own control. In
this design, units are randomly assigned to one of two or more sequence groups
and in each sequence group patients are given a treatment for a period, and then
switched to another treatment for a second period, and so on. For example, if two
treatments, say A and B, are being investigated in a basic two-period crossover
design, one group of patients would be assigned to treatment A for, say, 2 weeks,
and then to treatment B for 2 weeks. A second group of patients would be assigned
to treatment B for 2 weeks, followed by treatment A for 2 weeks. In this design,
a residual or carryover effect of the treatment given in the first period may affect
the results found in the second period. In an attempt to prevent this, a rest (or
‘washout’) period is sometimes given between the two treatment periods. Provided
there is no carryover effect, or if the carryover effect is the same when B is followed
by A as when A is followed by B, there is no problem in using all the data to estimate
the true difference between the effects of the two treatments. If this is not the case,
difficulties arise in analyzing the results of this kind of experimental design.
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In many studies, patients or families are recruited into the study over weeks,
months, or even years. Whenever there is a lapse in time between the observation of
successive experimental units, a sequential design may be used. In such a design, the
data are analyzed periodically as they are collected, and the result of each analysis
determines whether to continue recruiting study units or whether the study should
be terminated and a decision made, on the basis of the data gathered so far, as
to which treatment is best. It is also possible to use the result of each analysis to
determine the probability of assigning the next patient to each of the treatments. In
this way, as evidence accumulates that a particular treatment is best, the next patient
recruited into the study has a greater probability of receiving that treatment. This
strategy is called ‘playing the winner’. A particular type of sequential design that
is sometimes used in family studies determines the size of each recruited family.
Once a proband with a particular disease and, say, all the first degree relatives of
that proband have been recruited, if one of those relatives has the disease, one
continues to recruit all the first degree relatives of that affected relative; then,
if one of the newly recruited relatives has the disease, all available first degree
relatives of that affected person are also recruited; one continues in this fashion
until none of the newly recruited relatives has the disease. The important thing
about this sequential design is to decide at each stage which further relatives will
be recruited on the basis of only what one knows about the relatives in the sample so
far – that is, the decision to recruit a relative must be made without any knowledge
of whether or not that relative is affected. If this rule is strictly adhered to, an
appropriate analysis of the sample is relatively easy.

So far, we have discussed that aspect of experimental design that concerns the
way in which the experimental units are assigned to different treatments. We have
stressed that randomization must be involved at this step if we are to avoid biases and
be able to make valid inferences. Another aspect of experimental design concerns
the choice of the different treatments to investigate. We may be interested in the
effects of three different doses of drug A – call these treatments A1 A2, and A3, We
may also be interested in the effects of two different doses of drug B, say B1 and B2, as
treatments for the same disease. Furthermore, we may be interested in investigating
whether there is any advantage in using these drugs in combination. We could set
up separate experiments to investigate each of these three questions. But it is more
economical to investigate the three questions simultaneously in a single experiment
that has a factorial arrangement of the treatments. By this we mean that there are
two or more factors of interest (two in our example – drug A and drug B), each
at two or more levels (three levels of drug A and two levels of drug B), and that
our treatments comprise all possible combinations of different levels of each factor.
Thus, there would be 3×2=6 different treatments, which we can label A1B1, A1B2,
A2B1, A2B2, A3Bl and A3B2. Similarly we might be interested in investigating the
three genotypes at a diallelic locus and two levels of a drug in a 3×2 factorial design.
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Some investigators might be inclined to run three experiments for this example:
one to study A1 versus A2 versus A3, a second to study B1 versus B2, and a third
to study combinations of the two drugs. This highly inefficient approach should be
avoided. In some special circumstances, it may be feasible to study combinations
of treatments without using all possible treatment combinations in the experi-
ment. Such experiments are said to have a fractional factorial arrangement of the
treatments.

It is important to keep in mind that both the choice of treatments and the way
in which the study units are assigned to them (i.e. the method of randomization)
determine the experimental design. Thus, we could have a completely randomized
design or any of the other experimental designs mentioned above with a factorial
arrangement of treatments. It is also important to keep in mind that the purpose
of the design is to have an experimental plan that answers questions of interest in
as efficient a manner as is practical. Advanced concepts may be required for this
purpose and, if the ‘treatments’ are different genotypes at one or more loci, so that
randomization is just not possible, methods need to be devised to minimize any
confounding.

There are many other general aspects of experimental design, only a few of
which are mentioned here. Laboratory techniques should be refined to minim-
ize, or perhaps even eliminate entirely, sources of extraneous variability, such as
observer biases, measurement errors, and instrument variability. Where possible,
large sources of variability should be used as a basis for defining ‘blocks’ in a random-
ized blocks experiment. Sometimes it may be possible to measure, but not control
with any accuracy, factors that could be important sources of variability. This is
particularly true in a pharmacogenetic experiment, where the genetic variation at
a locus can be measured but not controlled. In a biochemical experiment in which
each study unit is a reaction mixture, as another example, it may be possible to con-
trol the temperature of each mixture to within 2 ◦C, but no more accurately than
that. On the other hand, it might be possible to measure the actual temperature
attained in each mixture with great accuracy. If such small temperature changes
could be critical to the outcome measures of primary interest, then the temperature
of each mixture should be recorded. Measures thought to be affected by the differ-
ent experimental conditions are those of primary interest and are often referred to
as response variables or variates. Other measures that are not themselves of primary
interest, but may have an important effect on the response variable(s), are called
concomitant variables. Thus genotypes are often concomitant variables, and tem-
perature is a concomitant variable in our last example, and a statistical technique
called the analysis of covariance can measure the effect of, or make allowances
for, such variables; this technique is briefly discussed in Chapter 11. The precision
of experimental results can often be greatly improved if appropriate concomitant
variables are measured at the time of a study.
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Finally, an important consideration in any investigation is the number of study
units to include. The more study units observed, the more reliable our conclu-
sions will be; however, we should like to obtain reliable results with a minimum
amount of money, time, and effort. Statistical methods are available for estimating
the number of study units, or sample size required once a study design has been
chosen.

We now turn to special considerations of experimental design when the study
units are individual human subjects. Typically, in human studies, we randomly assign
each individual to a treatment regimen and in this circumstance we refer to the pro-
tocol for randomization as an individually randomized plan. If we base our random
assignment on groups of individuals (such as families), we refer to the randomiza-
tion as a group randomized plan. Although the practice is open to criticism, group
randomized plans are frequently used in community-based intervention studies in
which, for example, each community (or hospital or clinic) is randomly assigned a
single type of intervention and all the individuals in that community receive the same
intervention while individuals in other communities receive other interventions,
depending on the randomization.

Clinical trials are experimental studies that involve people as study units. Clin-
ical trials have come to play a major role in deciding the efficacy of new drugs and
other treatments as they become available. Early investigations of new treatments
tend to focus on animal studies, but the ultimate evaluation involves a clinical trial.
Often the response of each study unit is observed on two or more occasions. These
investigations are called longitudinal studies. In these investigations it is sometimes
of interest to model changes with time in terms of mathematical functions or growth
curves. A distinction is sometimes made between longitudinal studies, in which the
response is observed over long periods, and repeated measures studies, in which
data are collected over a relatively short period of time – frequently under exper-
imental conditions that change over time, as in the changeover design. Another
special type of longitudinal study is called a follow-up study. In follow-up studies,
the response outcome is the time to occurrence of some endpoint such as death,
disease, or remission of disease. Because of the difficulties in maintaining an exper-
iment over long periods of time, there is a greater chance of having missing data in
long-term follow-up studies. Incomplete or missing data add to the complexities of
statistical analysis.

The process of developing a new drug usually begins in a research laborat-
ory in pre-clinical studies. As the drug is developed, animal studies are conducted.
The experimental drug is introduced to humans in phase I trials, which involve
about 10–20 very closely monitored subjects. The purpose of this early testing is
to regulate dose tolerance and drug action in people. Healthy adult male volun-
teers are often used as subjects in phase I trials, but patients with the disorder
of interest are also used in some investigations. Phase II trials are conducted to
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determine the effectiveness and safety of the new drug, relative to another drug or
a placebo, and to regulate further the preferred dose (which may vary with disease
severity). Phase III trials are conducted to demonstrate drug efficacy and safety
in patients typical of those expected to use the drug. These trials usually involve a
large number of subjects and several investigators, and the duration of the study
is often lengthy. Phase IV studies are conducted to monitor long-term experience
with the drug after it is marketed. Phase I, II, and III studies are conducted to sup-
port applications to the US Federal Drug Administration for permission to market
a new drug.

In clinical trials, randomization tends to provide a good distribution of both
poor- and good-risk patients in all treatment groups. Obviously, if one treatment
group were assigned only good-risk patients and the other only poor-risk patients, a
subsequent comparison of treatment effects would be biased. But even if we achieve
a perfect randomization to the different treatments, it is still possible to misinterpret
the effective differences among the treatments. If one group of patients is given an
injection of a drug and the other is not, we cannot tell whether the difference in
outcome is caused by the drug itself or by the act of injection. (Recall the example
of the green plant that turns yellow in the closet: without a proper control we cannot
be sure whether this effect is caused by less light or less heat.) A better plan would
be to inject the control patients in the same manner, with a similar fluid, but one
that does not contain the active drug. In this way the effect of injection is no longer
confounded with the effect of the drug.

To enhance objectivity in evaluating treatments in clinical trials, the patient
and/or the evaluating clinician are often not told which treatment the patient is
receiving. This is especially important if one of the treatments is the administra-
tion of an inactive treatment (such as an injection or a pill containing no active
drug), called a placebo. It is not unusual to observe an improvement in a group
of patients on placebo therapy (a placebo effect) when the patients do not know
they are receiving a placebo; however, if they know they are receiving a placebo,
the effect is destroyed. Withholding information about which treatment is being
used is called blinding or masking; when both the patient and the evaluating clini-
cians are blinded (masked), the procedure is called double blinding or double
masking.

Researchers involved in clinical trials often go to great lengths to try to enhance
compliance (adherence) to a treatment regimen. If the treatment is a one-time treat-
ment, compliance is not a problem; however, if it is a treatment in which the patient
must take a prescribed drug one or more times a day, then compliance is often
poor. Frequent contact (e.g. once a week) between the physician and the patient
can enhance compliance but can also be prohibitively expensive. It may be helpful
to provide motivational programs, including educational lectures and group discus-
sions. Compliance can be monitored by counting the number of pills remaining in
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the container at each visit, or by using specially designed dispensers. Compliance
may influence response and vice versa; therefore, bias may be introduced if the
types of subjects not complying with the study protocol or if the reasons for non-
compliance differ among treatment groups. Special analyses may be required to
assess the nature of noncompliance and its impact on treatment comparisons. In
family studies, whether or not a family member agrees to participate could be a
confounding factor.

An important consideration in clinical trials is ethics. If a physician believes
that one treatment is better than another, can that physician ethically assign
patients to treatments in a random fashion? On the other hand, is it ethical not
to conduct a clinical trial if we are not sure which treatment is best? If the risks
of adverse reactions or undesirable side effects are great, can the physician ethic-
ally prescribe a drug? If early in the trial it becomes evident that one treatment
is preferable to another, can we continue to randomly assign patients to all the
treatments? If a patient has a genotype that without treatment predisposes to a
serious disease, should the relatives of that patient be contacted for genetic test-
ing? Questions such as these must be addressed by internal review boards in all
human studies. Furthermore, the purpose of the study and the possible risks must
be described in lay terms to the patient, who must then sign an ‘informed con-
sent’ form agreeing to participate in the study. But the patient must be given the
option of leaving the study at any time, and if this option is exercised, care must
be taken in analyzing the results of the trial to ensure that it introduces no serious
biases.

QUASI-EXPERIMENTAL STUDIES

Studies that investigate study units – people, animals – and outcome meas-
ures to assess the relative efficacy of treatments but do not use a well-defined
method of random assignment to allocate the treatments to the study units are
called quasi-experiments. These study designs are usually chosen to parallel the
experimental designs employed in randomized experiments and are referred to
as quasi-experimental designs. For example, in a study of three different ways
of counseling persons who have lost a substantial amount of weight as a result
of participating in a weight management program – face-to-face contact, tele-
phone contact or internet contact – participants could be assigned to one of the
modes of contact in a randomized experiment, or they could be allowed to choose
their mode of contact in a quasi-experiment. Although many researchers argue
in favor of quasi-experiments, they have many shortcomings and should be used
cautiously.
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SUMMARY

1. The investigation of cause and effect requires well-designed studies. That B
follows A does not imply that A causes B, because confounding factors may be
present.

2. Study units are sampled from a study population, which is usually only part of
the target population of interest. The set of all possible study units makes up
the study population. The study population about which we make inferences
determines how the study units are defined. Multiple measurements made on a
study unit do not increase the sample size.

3. Selection of samples from a population using an element of randomization allows
one to draw valid inferences about the study population. If the population is
heterogeneous, better representation is obtained by use of a stratified random
sample. A systematic random sample is a convenient approximation to a random
sample.

4. Two types of observational studies are used to investigate the causes of disease. In
cohort, or prospective, studies, samples are chosen on the basis of the presence
or absence of a suspected cause, and then followed over time to compare the
frequency of disease development in each sample. A cohort, or prospective, study
is termed historical if it is conducted totally on the basis of past records. In case–
control, or retrospective, studies, samples are chosen on the basis of presence or
absence of disease, and compared for possible causes in their past. The choice
of controls in case–control studies is critical: they may be hospital or population-
based; matching for demographic and other factors is usually desirable.

5. In experimental studies, there is intervention on the part of the researcher, who
subjects the study units to treatments. Randomization by an approved method
in the allocation of study units to the different treatment groups provides a safe-
guard against possible confounding factors, so that valid inferences are possible.
The experimental protocol may employ an individually randomized plan or a
group randomized plan.

6. In a completely randomized design, each study unit has equal probability of being
assigned to any treatment. Heterogeneity among study units can be ‘blocked
out’ in a randomized blocks design. A split-plot design allows study units, after
being assigned to treatments at a primary level, to be divided into subunits for
assignment to treatments at a secondary level. In a changeover, or crossover,
design, each study unit is subjected to two (or more) treatments over time and
comparisons among treatments are made within study units. This design can
lead to difficulties in the analysis and/or interpretation if there are carryover
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effects from one period to the next. In a sequential design, the data are analyzed
periodically to determine whether and/or how to continue the study. A factorial
arrangement of treatments is one in which the treatments comprise all possible
combinations of different levels of two or more factors.

7. In all experiments, extraneous sources of variability should be kept to a min-
imum or blocked out. Any remaining variables that could have a large effect on
the results but cannot be blocked out should be measured during the course
of the experiment. Such concomitant variables can be used in an analysis of
covariance to increase the precision of the results.

8. Clinical trials are experimental studies in which the study units are people. They
are used to judge the efficacy of new drugs and other treatments. Great care
is needed in the choice of the control or comparison (in view of the commonly
found placebo effect) and in monitoring adherence to a regular regimen. Either
the physician or the patient may be blinded, or masked, as to which treatment is
being used. Ideally, both are blinded, in a ‘double-blinded’ or ‘double-masked’
trial. Ethical considerations play an important role in the design of clinical trials.

FURTHER READING

Altman, D.G. (1980) Statistics and ethics in medical research: study design.British Medical
Journal 281:1267-1269. (This is a succinct overview of the relation between design and
ethics in observational studies and clinical trials.)

Marks, R.G. (1982) Designing a Research Project: The Basics of Biomedical Research Meth-
odology. Belmont, CA: Lifetime Learning. (This is a book on the practical aspects of
design for a novice researcher.)

Meinert, C.L. (1986) Clinical Trials: Design, Conduct and Analysis. New York: Oxford
University Press.

PROBLEMS

1. A physician decides to take a random sample of patient charts for the last
5 years at a large metropolitan hospital to study the frequency of cancer
cases at that hospital. He estimates the number of charts to be 10,000
and decides to take a 5% sample (i.e. a sample of 500 charts). He decides
to randomly select a number between 1 and 20 (e.g. suppose the number
turned out to be 9) and then study every 20th chart beginning with that
number (in this example, charts 9, 29, 49, 69, . . .). This is an example of a
sample design known as a

A. two-stage cluster sample
B. stratified random sample
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C. systematic random sample
D. random cluster sample
E. simple random sample

2. A physician decides to take a random sample of hospitals in a large metro-
politan area. From each hospital included in the sample he takes a random
sample of house-staff physicians. He interviews the physicians to determ-
ine where they attended medical school. The sample design used in this
study is an example of a

A. systematic random sample
B. stratified random sample
C. simple cluster sample
D. two-stage cluster sample
E. haphazard sample

3. In a study of the cause of lung cancer, patients who had the disease
were matched with controls by age, sex, place of residence, and social
class. The frequency of cigarette smoking in the two groups was then
compared. What type of study was this?

A. Sample survey
B. Experimental study
C. Retrospective study
D. Clinical trial
E. Prospective study

4. Investigations in which the study units are stimulated in some way and
the researcher observes a response are called

A. observational studies
B. prospective studies
C. sample surveys
D. experimental studies
E. retrospective studies

5. A study was undertaken to compare results of the surgical treatment of
duodenal ulcer. A total of 1358 patients who met the study criteria were
randomly assigned to one of four surgical procedures.The purpose of the
randomization was to

A. ensure that the double-blind aspect of the study was maintained
B. obtain the unbiased distribution of good- and poor-risk patients in all

treatment groups
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C. achieve the same number of patients on each operation
D. guarantee that the study group was a representative sample of the

general population
E. remove the poor-risk patients from the study

6. Investigators who use nonrandomized controls in clinical trials often argue
that their controls are satisfactory because the distribution of prognostic
factors in the control and experimental groups is similar before therapy.
It is better to randomize because

A. a placebo effect is easier to detect in randomized trials
B. randomization tends to magnify the differences between placebo and

treatment groups
C. many important prognostic factors that were not considered may lead

to bias
D. it is easier to maintain blinding in randomized trials
E. compliance is better in randomized trials

7. A researcher decides to conduct a clinical trial using 40 patients. She
carries out her treatment assignment by a well-defined method of ran-
domly allocating 20 patients to group I and 20 patients to group II. After
4 weeks on treatment A, patients in group I are taken off the treatment
for 4 weeks, and then given treatment B for an additional 4 weeks. Simil-
arly, patients in group II are given treatment B for 4 weeks, no treatment
for 4 weeks, and then treatment A for 4 weeks. The design used in this
study is called

A. a stratified design
B. a sequential design
C. a completely randomized design
D. a randomized block design
E. a changeover design

8. An experiment is to be conducted using a crossover design. The statisti-
cian informs the investigator that a rest period, or washout period, should
be included in the study plan.The purpose of the rest period is to eliminate
or reduce

A. observer bias
B. missing data
C. residual treatment effects
D. problems with patient compliance
E. adverse drug experiences



POPULATIONS, SAMPLES, AND STUDY DESIGN 41

9. A study is conducted using either dose A1 or A2 of the drug A and dose
B1, B2 or B3 of drug B.The design was such that each patient was equally
likely to receive any one of the treatment combinations A1B1, A1B2, A1B3,
A2B1, A2B2 or A2B3. This is an example of a

A. randomized blocks design with a factorial arrangement of treatments
B. changeover design
C. completely randomized design with a factorial arrangement of

treatments
D. sequential design
E. staggered design with a factorial arrangement of treatments

10. A combination drug has two components: A. the antihistamine, and B.
the decongestant. A clinical trial is designed in two parts: part I to ran-
domly assign patients to either a placebo control or drug A, and part II to
randomly assign a second group of patients to a placebo control or drug
B. A more efficient plan is to use a design with a

A. two-stage cluster sampling
B. systematic random sample
C. good compliance history
D. random allocation of adverse drug experiences
E. factorial arrangement of treatments

11. Pregnant women were recruited into a drug trial during the 28th week of
pregnancy.They were allocated at random and double-blinded to placebo
or active treatment groups. This could be best defined as

A. a sample survey
B. a clinical trial
C. a retrospective study
D. a case-history study
E. an observational study

12. Studies involving patients randomly assigned to treatment groups and
then observed in order to study response to treatment are called

A. retrospective studies
B. case–control studies
C. observational studies
D. clinical trials
E. sample surveys

13. In a double-blind, randomized trial of the effectiveness of a drug in the
treatment of ulcers, patients were randomly assigned to either an act-
ive or a placebo group. Each person was followed up for 6 weeks and



42 BASIC BIOSTATISTICS FOR GENETICISTS AND EPIDEMIOLOGISTS

evaluated as showing (1) significant improvement, or (2) no significant
improvement. The purpose of the double-blind aspect was to

A. obtain a representative sample of the target population
B. achieve a good distribution of good- and poor-risk patients in the two

groups
C. guard against observer bias
D. eliminate the necessity for a statistical test
E. ensure proper randomization

14. Studies using the changeover design are special types of

A. retrospective studies
B. repeated measures studies
C. observational studies
D. adverse drug reaction studies
E. intent-to-treat studies

15. In a randomized, double-blind clinical trial of an antihistamine drug versus
a placebo control, the drug was found to be beneficial for the relief of
congestion, but drowsiness, dizziness, jitteriness, and nausea were sig-
nificantly more prevalent and more severe in the group receiving the drug.
This is an example of

A. a changeover trial
B. adverse drug experiences which must be weighed against the merits

of the drug
C. longitudinal data that require a growth curve interpretation
D. a trial in which compliance was not a problem
E. a study that should have been carried out using laboratory animals



CHAPTER THREE

Key Concepts

interval, ordinal, and nominal scale
quantitative, qualitative
continuous data, categorical or discrete

data
table, frequency distribution
histogram, bar graph, frequency polygon,

cumulative plot, scatter plot (scatter
diagram), tree diagram,
decision tree

proportion, percentage, rate
prevalence, incidence
relative risk, odds ratio, prevalence ratio,

attributable risk

sensitivity, specificity, predictive values
measures of central tendency:

mean
median
mode

measures of spread (variability):
range
interquartile range
variance
standard variation
coefficient of variation

skewness, kurtosis





Descriptive Statistics

SYMBOLS AND ABBREVIATIONS
AR attributable risk
CV coefficient of variation
g2 fourth cumulant; the coefficient

of kurtosis minus 3 (used to
measure peakedness)

OR odds ratio
PR prevalence ratio
RR relative risk
s sample standard deviation

(estimate)
s2 sample variance (estimate)

WHY DO WE NEED DESCRIPTIVE STATISTICS?

We stated in Chapter 1 that a statistic is an estimate of an unknown numerical
quantity. A descriptive statistic is an estimate that summarizes a particular aspect of
a set of observations. Descriptive statistics allow one to obtain a quick overview, or
‘feel’, for a set of data without having to consider each observation, or datum,
individually. (Note that the word ‘datum’ is the singular form of the word ‘data’;
strictly speaking, ‘data’ is a plural noun, although, like ‘agenda’, it is commonly used
as a singular noun, especially in speech.)

In providing medical care for a specific patient, a physician must consider:
(1) historical or background data, (2) diagnostic information, and (3) response to
treatment. These data are kept in a patient chart that the physician reviews from
time to time. In discussing the patient with colleagues, the physician summarizes
the chart by describing the atypical data in it, which would ordinarily represent only
a small fraction of the available data. To be able to distinguish the atypical data, the
physician must know what is typical for the population at large. The descriptive

Basic Biostatistics for Geneticists and Epidemiologists: A Practical Approach R. Elston, W. Johnson
c© 2008 John Wiley & Sons, Ltd
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statistics we discuss in this chapter are tools that are used to help describe a
population. In addition, as we discussed in Chapter 2, geneticists and epidemi-
ologists conduct studies on samples of patients and families and, when they report
their general findings, they need to indicate the type of sample they investigated.
Descriptive statistics are used both to describe the sample analyzed and to sum-
marize the results of analyses in a succinct way. Tables and graphs are also useful in
conveying a quick overview of a set of data, and in fact tables and graphs are often
used for displaying descriptive statistics. We therefore include a brief discussion of
them in this chapter. First, however, we consider the different kinds of data that
may need to be described.

SCALES OF MEASUREMENT

We are all familiar with using a ruler to measure length. The ruler is divided into
intervals, such as centimeters, and this is called an interval scale. An interval scale
is a scale that allows one to measure all possible fractional values within an interval.
If we measure a person’s height in inches, for example, we are not restricted to
measures that are whole numbers of inches. The scale allows such measures as 70.75
or 74.5 inches. Other examples of interval scales are the Celsius scale for measuring
temperature and any of the other metric scales. In each of these examples the trait
that is being measured is quantitative, and we refer to a set of such measurements as
continuous data. Height, weight, blood pressure, and serum cholesterol levels are
all examples of quantitative traits that are commonly measured on interval scales.
The number of children in a family is also a quantitative trait, since it is a numerical
quantity; however, it is not measured on an interval scale, nor does a set of such
numbers comprise continuous data. Only whole numbers are permissible, and such
data are called discrete.

Sometimes we classify what we are measuring only into broad categories. For
example, we might classify a person as ‘tall’, ‘medium’, or ‘short’, or as ‘hypertensive’,
‘normotensive’, or ‘hypotensive’. The trait is then qualitative, and such measure-
ments also give rise to discrete, or categorical, data consisting of the counts, or
numbers of individuals, in each category. There are two types of categorical data,
depending on whether or not there is a natural sequence in which we can order the
categories. In the examples just given, there is a natural order: ‘medium’ is between
‘tall’ and ‘short’, and ‘normotensive’ is between ‘hypertensive’ and ‘hypotensive’.
In this case the scale of measurement is called ordinal. The number of children in a
family is also measured on an ordinal scale. If there is no such natural order, the scale
is called nominal, with the categories having names only, and no sequence being
implied. Hair color, for example (e.g. ‘brown’, ‘blond’, or ‘red’), would be observed
on a nominal scale. Of course the distinction between a nominal and an ordinal
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scale may be decided subjectively in some situations. Some would argue that when
we classify patients as ‘manic’, ‘normal’, or ‘depressed’, this should be considered
a nominal scale, while others say that it should be considered an ordinal one. The
important thing to realize is that it is possible to consider categorical data from these
two different viewpoints, with different implications for the kinds of conclusions
we might draw from them.

TABLES

Data and descriptive statistics are often classified and summarized in tables. The
exact form of a table will depend on the purpose for which it is designed as well as
on the complexity of the material. There are no hard and fast rules for constructing
tables, but it is best to follow a few simple guidelines to be consistent and to ensure
that the table maintains its purpose:

1. The table should be relatively simple and easy to read.
2. The title, usually placed above the table, should be clear, concise, and to the

point; it should indicate what is being tabulated.
3. The units of measurement for the data should be given.
4. Each row and column, as appropriate, should be labeled concisely and clearly.
5. Totals should be shown, if appropriate.
6. Codes, abbreviations, and symbols should be explained in a footnote.
7. If the data are not original, their source should be given in a footnote.

Tables 3.1 and 3.2 are two very simple tables that display data we shall use,
for illustrative purposes, later in this chapter. Table 3.1 is the simplest type of
table possible. In it is given a set of ‘raw’ data, the serum triglyceride values of 30
medical students. There is no special significance to the rows and columns, their
only purpose being to line up the data in an orderly and compact fashion. Note that,
in addition, the values have been arranged in order from the smallest to the largest.
In this respect the table is more helpful than if the values had simply been listed in

Table 3.1 Fasting serum triglyceride levels
(mg/dl) of 30 male medical students

45 46 49 54 55
61 67 72 78 80
83 85 86 88 90
93 99 101 106 122

123 124 129 151 165
173 180 218 225 287
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Table 3.2 Frequency distribution of fasting serum cholesterol
levels (mg/dl) of 1000 male medical students

Cholesterol Level (mg/dl) Number of Students

90–100 2
100–110 8
110–120 14
120–130 21
130–140 22
140–150 28
150–160 95
160–170 102
170–180 121
180–190 166
190–200 119
200–210 96
210–220 93
220–230 35
230–240 30
240–250 23
250–260 15
260–270 7
270–280 3
280–290 1
Total 1000

the order in which they were determined in the laboratory. There is another kind
of table in which the rows and columns have no special significance, and in which,
furthermore, the entries are never ordered. This is a table of random numbers,
which we referred to in Chapter 2.

The simplest type of descriptive statistic is a count, such as the number of
persons with a particular attribute. Table 3.2 is a very simple example of how a set
of counts can be displayed, as a frequency distribution. Each of the observed 1000
cholesterol levels occurs in just one of the interval classes, even though it appears
that some levels (e.g. 100 and 110 mg/dl) appear in two consecutive classes. Should
a value be exactly at the borderline between two classes, it is included in the lower
class. This is sometimes clarified by defining the intervals more carefully (e.g. 90.1–
100.0, 100.1–110.0, . . .). Age classes are often defined as 0 to 9 years, 10 to 19 years,
etc. It is then understood that the 10 to 19 year class, for example, contains all the
children who have passed their 10th birthday but not their 20th birthday. Note that
in Table 3.2 some of the information inherent in the original 1000 cholesterol values
has been lost, but for a simple quick overview of the data this kind of table is much
more helpful than would be a table, similar to Table 3.1, that listed all 1000 values.
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GRAPHS

The relationships among numbers of various magnitudes can usually be seen more
quickly and easily from graphs than from tables. There are many types of graphs,
but the basic idea is to provide a sketch that quickly conveys general trends in
the data to the reader. The following guidelines should be helpful in constructing
graphs:

1. The simplest graph consistent with its purpose is the most effective. It should
be both clear and accurate.

2. Every graph should be completely self-explanatory. It should be correctly
and unambiguously labeled with title, data source if appropriate, scales, and
explanatory keys or legends.

3. Whenever possible, the vertical scale should be selected so that the zero line
appears on the graph.

4. The title is commonly placed below the graph.
5. The graph generally proceeds from left to right and from bottom to top. All

labels and other writing should be placed accordingly.

One particular type of graph, the histogram, often provides a convenient way of
depicting the shape of the distribution of data values. Two examples of histograms,
relating to the data in Tables 3.1 and 3.2, are shown in Figures 3.1 and 3.2. The
points you should note about histograms are as follows:

1. They are used for data measured on an interval scale.
2. The visual picture obtained depends on the width of the class interval used, which

is to a large extent arbitrary. A width of 10 mg/dl was chosen for Figure 3.1, and
a width of 20 mg/dl for Figure 3.2. It is usually best to choose a width that results
in a total of 10–20 classes.

3. If the observations within each class interval are too few, a histogram gives a
poor representation of the distribution of counts in the population. Figure 3.2
suggests a distribution with several peaks, whereas a single peak would most likely
have been found if 1000 triglyceride values had been used to obtain the figure.
More observations per class interval could have been obtained by choosing a
wider interval, but fewer than 10 intervals gives only a gross approximation to a
distribution.

A bar graph is very similar to a histogram but is used for categorical data. It
may illustrate, for example, the distribution of the number of cases of a disease in
different countries. It would look very similar to Figures 3.1 and 3.2, but, because
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Figure 3.1 Histogram of 1000 fasting serum cholesterol levels (from Table 3.2).
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Figure 3.2 Histogram of 30 fasting serum triglyceride levels (from Table 3.1).



DESCRIPTIVE STATISTICS 51

the horizontal scale is not continuous, it would be more appropriate to leave gaps
between the vertical rectangles or ‘bars’. Sometimes the bars are drawn horizontally,
with the vertical scale of the graph denoting the different categories. In each case,
as also in the case of a histogram, the length of the bar represents either a frequency
or a relative frequency, sometimes expressed as a percentage.

A frequency polygon is also basically similar to a histogram and is used for
continuous data. It is obtained from a histogram by joining the midpoints of the
top of each ‘bar’. Drawn as frequency polygons, the two histograms in Figures 3.1
and 3.2 look like Figures 3.3 and 3.4. Notice that the polygon meets the horizontal
axis whenever there is a zero frequency in an interval – in particular, this occurs at
the two ends of the distribution. Again the vertical scale may be actual frequency
or relative frequency, the latter being obtained by dividing each frequency by the
total number of observations; we have chosen to use relative frequency. A frequency
polygon is an attempt to obtain a better approximation, from a sample of data, to
the smooth curve that would be obtained from a large population. It has the further
advantage over a histogram of permitting two or more frequency polygons to be
superimposed in the same figure with a minimum of crossing lines.
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Figure 3.3 Relative frequency polygon corresponding to Figure 3.1.

A cumulative plot is an alternative way of depicting a set of quantitative data.
The horizontal scale (abscissa) is the same as before, but the vertical scale (ordinate)
now indicates the proportion of the observations less than or equal to a particular
value. A cumulative plot of the data in Table 3.2 is presented in Figure 3.5. We see
in Table 3.2, for example, that 2 + 8 + 14 + 21 + 22 + 28 + 95=190 out of the 1000
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Figure 3.4 Relative frequency polygon corresponding to Figure 3.2.

students have serum cholesterol levels less than or equal to 160 mg/ dl, and so the
height of the point above 160 in Figure 3.5 is 190/1000, or 0.19. We could similarly
draw a cumulative plot corresponding to the histogram of the 30 triglyceride values
(Figure 3.2), but one of the great advantages of the cumulative plot is that it does
not require one to group the data into interval classes, as does a histogram. In a
cumulative plot every single observation can be depicted, as illustrated in Figure 3.6
for the data in Table 3.1. It is clear from that table that l out of 30 values is less than
or equal to 45, 2 out of 30 less than or equal to 46, 3 out of 30 are less than or equal to
49, and so forth. So we can make 1/30 the ordinate at 45, 2/30 the ordinate at 46, 3/30
the ordinate at 49, and so forth, up to 30/30=1 as the ordinate at 287. However, the
purpose of the cumulative plot is to approximate the continuous curve we would
obtain with a much larger set of numbers. If more observations were included, one
of them might possibly be larger than any of the values in Table 3.1. For this reason
it is customary to make the ordinate at the largest data point (287 in this instance)
somewhat less than unity. One convenient way of doing this is to use one more
than the total number of observations as the divisor. Thus the ordinates for the data
in Table 3.1 are depicted in Figure 3.6 as 1/31 at 45, 2/31 at 46, 3/31 at 49, up to
30/31 at 287. Note that a cumulative plot results in a much smoother curve than the
histogram (Fig. 3.2) and that all the information in the original table is retained.

Many other types of graphs are possible, but only two more will be mentioned
here. The first, the scatter plot, or scatter diagram, is an effective way of illustrating
the relationship between two measures. In it every point represents a pair of values,
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Figure 3.5 Cumulative plot of the data in Table 3.2.
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Figure 3.6 Cumulative plot of the data in Table 3.1.
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such as the values of two different measures taken on the same person. Thus, in the
scatter plot depicted in Figure 3.7, every point represents a triglyceride level taken
from Table 3.1, together with a corresponding cholesterol level measured on the
same blood sample. We can see that there is a slight tendency for one measure to
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Figure 3.7 Scatter plot of cholesterol versus triglyceride levels of 30 male medical
students.
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Figure 3.8 Tree diagram indicating outcome of myocardial infarction. (Source: R.A.
Cawson, A.W. McCracken and P.B. Marcus (1982). Pathologic mechanisms and Human

Disease. St. Louis, MO: Mosby.)
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depend on the other, a fact that would not have been clear if we had simply listed
each cholesterol level together with the corresponding triglyceride level.

The final graph that we shall mention here is the tree diagram. This is often used
to help in making decisions, in which case it is called a decision tree. A tree diagram
displays in temporal sequence possible types of actions or outcomes. Figure 3.8
gives a very simple example; it indicates the possible outcomes and their relative
frequencies following myocardial infarction. This kind of display is often much more
effective than a verbal description of the same information. Tree diagrams are also
often helpful in solving problems.

PROPORTIONS AND RATES

In comparing the number or frequency of events occurring in two groups, raw
numbers are difficult to interpret unless each group contains the same num-
ber of persons. We often compute proportions or percentages to facilitate such
comparisons. Thus, if the purpose of a measure is to determine whether the
inhabitants in one community have a more frequent occurrence of tuberculosis
than those in another, simple counts have obvious shortcomings. Community A may
have more people with the disease (cases) than community B because its popula-
tion is larger. To make a comparison, we need to know the proportionate number
of cases in each community. Again, it may be necessary to specify the time at or
during which the events of interest occur. Thus, if 500 new cases of tuberculosis
were observed in a city of 2 million persons in 2007, we say that 0.025% of the
population in this city developed tuberculosis in 2007. Although frequencies are
counts, it has been common practice in genetics to use the term allele frequency
instead of allele relative frequency, or proportion, so that the allele frequencies at
a locus always add up to 1. Strictly speaking this is incorrect terminology, but we
shall follow this practice throughout this book.

Sometimes it is more convenient to express proportions multiplied by some
number other than 100 (which results in a percentage). Thus, the new cases of
tuberculosis in a city for the year 2007 might be expressed as 500 cases per 2
million persons (the actual population of the city), 0.025 per hundred (percent),
0.25 per thousand, or 250 per million. We see that three components are required
for expressions of this type:

(i) the number of individuals in whom the disease, abnormality, or other
characteristic occurrence is observed (the numerator);

(ii) the number of individuals in the population among whom the characteristic
occurrence is measured (the denominator);

(iii) a specified period of time during which the disease, abnormality, or character-
istic occurrence is observed.
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The numerator and the denominator should be similarly restricted; if the numer-
ator represents a count of persons who have a characteristic in a particular
age–race–gender group, then the denominator should also pertain to that same
age–race–gender group. When the denominator is restricted solely to those
persons who are capable of having or contracting a disease, it is sometimes
referred to as a population at risk. For example, a hospital may express its
maternal mortality as the number of maternal deaths per thousand deliveries.
The women who delivered make up the population at risk for maternal deaths.
Similarly, case fatality is the number of deaths due to a disease per so many
patients with the disease; here the individuals with the disease constitute the
population.

All such expressions are just conversions of counts into proportions or fractions
of a group, in order to summarize data so that comparisons can be made among
groups. They are commonly called rates, though strictly speaking a rate is a measure
of the rapidity of change of a phenomenon, usually per unit time. Expressions such
as ‘maternal death rate’ and ‘case fatality rate’ are often used to describe these pro-
portions even when no concept of a rate per unit time is involved. One of the main
concerns of epidemiology is to find and enumerate appropriate denominators for
describing and comparing groups in a meaningful and useful way. Two other com-
monly seen but often confused measures of disease frequency used in epidemiology
are prevalence and incidence.

The prevalence of a disease is the number of cases (of that disease) at a given
point in time. Prevalence is usually measured as the ratio of the number of cases at
a given point in time to the number of people in the population of interest at that
point in time.

The incidence of a disease is the number of new cases that occur during a
specified amount of time. To adjust for the size of the population being observed,
incidence is usually measured as the ratio of the number of new cases occurring
during a period to the number of people in the risk set – the set of people at risk
of developing the disease at any time during the period – under the assumption
that the risk remains constant throughout the period of interest. If the popula-
tion is large, the disease is relatively rare and there are only small changes in the
risk set due to death, immigration and emigration, then the number of people
in the population at the beginning of the period provides a suitable estimate of
the number in the risk set throughout the period. Thus, if the number of new
cases of coronary heart disease occurring in a population of 742,000 men during a
7-year period is observed to be 57,134, the incidence rate would be computed as
follows:

I = 57,134
742,000

× 1000 = 77.
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The incidence was 77 coronary-heart-disease events per 1000 men initially at risk,
during the 7-year period. If this were expressed per year, it would be a true rate.
Thus, the incidence rate was 11 cases per year per 1000 men over the 7-year period.

When studying a relatively small number of persons followed over time to
investigate the incidence of events in different treatment or exposure groups, we
often employ the concept of person-years at risk. Person-years at risk is defined as
the total time any person in the study is followed until the event of interest occurs,
until death or withdrawal from the study occurs, or until the end of the study period
is reached. In this context, the incidence rate for a disease is the ratio of the number
of new events to the total number of person-years the individuals in the risk set
were followed. We illustrate with a very small and simple example. Suppose 14
men were followed for up to 2 years to estimate their incidence of coronary heart
disease. Further, suppose one man developed the disease after 6 months (0.5 years)
and a second after 14 months (1.17 years). Finally, suppose that a third man was
followed only 18 months (1.5 years) before being lost to follow-up, at which time he
was known not to have had any events associated with coronary heart disease, and
the remaining 11 men were followed for the full 2 years without any such events.
The incidence rate would be computed as follows:

I = 2
0.5 + 1.17 + 1.5 + (11 × 2)

= 2
25.17

= 0.0795.

Thus, the incidence rate is estimated to be 0.0795 cases per person per year or,
equivalently, 0.0795 × 1000 = 79.5 cases per 1000 men per year.

Figure 3.9 demonstrates the difference between incidence and prevalence.
Assume that each line segment represents a case of disease from time of onset
(beginning of the line segment) until the disease has run its course (end of the line
segment). Moreover, assume that 100,000 persons are at risk on any given day. The
incidence for day 1 is 3 cases per 100,000 persons (3 new line segments) and for

1 2 3 4
Day

Figure 3.9 Six cases of a disease represented over time by line segments.
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day 3 it is 0 cases per 100,000 persons (0 new line segments). The prevalence at the
end of day 1 is 4 per 100,000 (3 line segments exist), and at the end of day 2 it is
6 (6 line segments exist). It should be obvious that two diseases can have identical
incidence, and yet one would have a much higher prevalence if its duration (time
from onset until the disease has run its course) is much larger.

If the incidence is in a steady state, so that it is constant over a specific
time period of interest, there is a useful relationship between incidence and pre-
valence. Let P be the prevalence of a disease at any point, I the incidence and D
the average duration of the disease. Then

P = I × D,

that is, the prevalence is equal to incidence multiplied by the average duration of
the disease. We will use this relationship later in this chapter to show how, under
certain conditions, we can obtain useful estimates of relative measures of disease
from data that are not conformed to provide such estimates directly.

Incidence measures rate of development of disease. It is therefore a measure
of risk of disease and is useful in studying possible reasons (or causes) for disease
developing. We often study the incidence in different groups of people and then
try to determine the reasons why it may be higher in one of the groups. Prevalence
measures the amount of disease in a population at a given point in time. Because
prevalence is a function of the duration of a disease, it is of more use in planning
health-care services for that disease.

In genetic studies, when determining a genetic model for susceptibility to
a disease with variable age of onset, it is important to allow for an affected
person’s age of onset and for the current age of an unaffected person in the
analysis. If we are not studying genetic causes for the development of and/or
remission from disease, but simply susceptibility to the disease, we need to con-
sider the cumulative probability of a person having or not having the disease by
that person’s age. This quantity, unlike population prevalence, can never decrease
with age.

RELATIVE MEASURES OF DISEASE FREQUENCY

Several methods have been developed for measuring the relative amount of new
disease occurring in different populations. For example, we might wish to measure
the amount of disease occurring in a group exposed to some environmental con-
dition, such as cigarette smoking, relative to that in a group not exposed to that
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condition. One measure used for this purpose is the relative risk (RR), which is
defined as

RR = incidence rate of disease in the exposed group
incidence rate of disease in the unexposed group

.

If the incidence of a particular disease in a group exposed to some condition is 30 per
100,000 per year, compared with an incidence of 10 per 100,000 per year in a group
unexposed to the condition, then the relative risk (exposed versus unexposed) is

RR = 30 per 100,000 per year
10 per 100,000 per year

= 3.

Thus, we say that the risk is 3 times as great in persons exposed to the condition.
The phrase ‘exposed to a condition’ is used in a very general sense. Thus, one can
talk of the relative risk of ankylosing spondylitis to a person possessing the HLA
antigen B27, versus not possessing that antigen, though of course the antigen is
inherited from a parent rather than acquired from some kind of environmental
exposure (HLA denotes the human leukocyte antigen system).

Another relative measure of disease occurrence is the odds ratio (OR). The
odds in favor of a particular event are defined as the frequency with which the event
occurs divided by the frequency with which it does not occur. For a disease with an
incidence of 30 per 100,000 per year, for example, the odds in favor of the disease
are 30/99,970. The odds ratio is then defined as

OR = odds in favor of disease in exposed group
odds in favor of disease in unexposed group

.

Thus, if the incidences are 30 per 100,000 and 10 per 100,000 as above, the odds
ratio for exposed versus unexposed is

OR = 30
99,970

/ 10
99,990

= 3.00006.

You can see from this example that for rare diseases the odds ratio closely approxim-
ates the relative risk. If incidence data are available, there is ordinarily no interest
in computing an odds ratio. However, the attractive feature of the odds ratio is that
it can be estimated without actually knowing the incidences. This is often done in
case–control studies, which were described in Chapter 2. Suppose, for example, it is
found that 252 out of 1000 cases of a disease (ideally, a representative sample from
a well-defined target population of cases) had previous exposure to a particular con-
dition, whereas only 103 out of 1000 representative controls were similarly exposed.
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These data tell us nothing about the incidences of the disease among exposed and
unexposed persons, but they do allow us to calculate the odds ratio, which in this
example is

252
748

/103
893

= 2.92.

Note that OR = 2.92 ∼= 3.00 = RR, so even if only case–control data were available,
we could estimate the relative risk of developing disease.

So far we have used data from persons observed over time to estimate risk
(incidence) of disease and relative risk of disease in exposed versus unexposed
persons, and data from a sample of cases and a second sample of controls to estimate
odds ratios, which, for rare diseases, provide useful estimates of relative risk. We
now consider a representative sample or cross-section of the population that we do
not follow over time, from which we cannot estimate incidence; however, we can
count the numbers who have the disease and do not have the disease, and in each
of these groups the numbers who have and have not been exposed. From this type
of data we can estimate the prevalence of disease in the exposed versus that in the
unexposed group and compute a prevalence ratio. Let PE denote the prevalence of
disease among the exposed and PU the prevalence among the unexposed. Similarly,
let IE , IU, DE and DU represent the corresponding incidences and average disease
durations. Then the prevalence ratio (PR) is

PR = PE

PU
= IE × DE

IU × DU
.

If the average duration of disease is the same in the exposed and unexposed groups,
then

PR = IE

IU
= RR.

Therefore, if equality of the disease duration among the exposed and unexposed
is a tenable assumption, the prevalence ratio provides a useful estimate of relative
risk. We often see in the literature that an odds ratio is calculated from incidence
data when a relative risk is more appropriate, and from prevalence data when a
prevalence ratio is preferable. This appears to be because easily accessible computer
software was available for calculating odds ratios that take into account concomitant
variables long before corresponding software was available for calculating analogous
relative risks and prevalence ratios.

The last relative measure of disease frequency we shall discuss is the attrib-
utable risk (AR), defined as the incidence of disease in an exposed group minus
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the incidence of disease in an unexposed group. Thus, in the previous example, the
attributable risk is

AR = 30−10 = 20 per 100,000 per year.

An excess of 20 cases per 100,000 per year can be attributed to exposure to the
particular condition. Sometimes we express attributable risk as a percentage of the
incidence of disease in the unexposed group. In the above example, we would have

AR% = 30 − 10
10

× 100 = 200%.

In this case we could say there is a 200% excess risk of disease in the exposed group.

SENSITIVITY, SPECIFICITY AND PREDICTIVE VALUES

We now define some terms that are often used to measure the effectiveness of a
test procedure, such as a genetic test to help diagnose a disease. We shall illustrate
these terms using the following hypothetical population of 10,000 persons classified
on the basis of disease status and their response to the test, which may be positive
or negative with respect to carrying a specific genetic variant:

Test Result

Disease status Negative Positive Total

Absent 8820 980 9800
Present 20 180 200
Total 8840 1160 10,000

Note first that the prevalence of the disease in the population is 200/10,000, or 2%.
The sensitivity of the test measures how well it detects disease; it is the pro-

portion of those with the disease who give a positive result. In the example the
sensitivity is 180/200 = 0.9.

The specificity of the test measures how well it detects absence of disease; it
is the proportion of those without the disease who give a negative result. In the
example, the specificity is 8820/9800 = 0.9.

Whenever sensitivity and specificity are equal, they represent the proportion
of the population that is correctly classified by the test. Thus, in our example, 90%
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of the total population is correctly classified by the test. This does not mean, how-
ever, that 90% of those who give a positive result have the disease. In order to know
how to interpret a particular test result, we need to know the predictive values of
the test, which are defined as the proportion of those positive who have the disease,
and the proportion of those negative who do not have the disease. For our example,
these values are 180/1160=0.155, and 8820/8840=0.998, respectively. Especially
in the case of a rare disease, a high specificity and high sensitivity are not suffi-
cient to ensure that a large proportion of those who test positive actually have the
disease.

MEASURES OF CENTRAL TENDENCY

Measures of central tendency, or measures of location, tell us where on our scale of
measurement the distribution of a set of values tends to center around. All the values
in Table 3.1, for example, lie between 45 and 287 mg/dl, and we need our measure
of central tendency to be somewhere between these two values. If our values had
been in milligrams per liter, on the other hand, we should want our measure of
central tendency to be 10 times as large. We shall discuss three measures of central
tendency: the mean, the median, and the mode. They all have the property (when
used to describe continuous data) that if every value in our data set is multiplied
by a constant number, then the measure of central tendency is multiplied by the
same number. Similarly, if a constant is added to every value, then the measure of
central tendency is increased by that same amount.

The mean of a set of numbers is the best-known measure of central tendency
and it is just their numerical average. You know, for example, that to compute
your mean score for four test grades you add the grades and divide by 4. If your
grades were 94, 95, 97, and 98, your mean score would be (94 + 95 + 97 + 98)/4 =
384/4 = 96.

One of the disadvantages of the mean as a summary statistic is that it is sensitive
to unusual values. The mean of the numbers 16, 18, 20, 22 and 24 is 20, and indeed
20 in this example represents the center of these numbers. The mean of the numbers
1, 2, 3, 4 and 90 is also 20, but 20 is not a good representation of the center of these
numbers because of the one unusual value. Another disadvantage of the mean is
that, strictly speaking, it should be used only for data measured on an interval scale,
because implicit in its use is the assumption that the units of the scale are all of
equal value. The difference between 50 and 51 mg/dl of triglyceride is in fact the
same as the difference between 250 and 251 mg/dl of triglyceride, (i.e. 1 mg/dl).
Because of this, it is meaningful to say that the mean of the 30 values in Table 3.1 is
111.2 mg/dl. But if the 30 students had been scored on an 11-point scale, 0 through
10 (whether for triglyceride level or anything else), the mean score would be strictly
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appropriate only if each of the 10 intervals, 0 to 1, 1 to 2, etc., were equal in value.
Nevertheless, the mean is the most frequently used descriptive statistic because, as
we shall see later, it has statistical properties that make it very advantageous if no
unusual values are present.

The geometric mean is another type of mean that is often useful when the data
contain some extreme observations that are considerably larger than most of the
other values. The geometric mean of a set of n values is defined as the product of the
n data values raised to the exponent 1/n. It is usually calculated by taking the natural
logarithms of each value, finding the (arithmetic) mean of these log-transformed
data, and then back-transforming to the original scale by finding the exponential of
the calculated log-scaled mean. For the numbers 1, 2, 3, 4 and 90, the geometric
mean is found as follows:

log(1) + log(2) + log(3) + log(4) + log(90)

5
= 1.5356,

geometric mean = exp(1.5356) = 4.644.

By taking logarithms, we shift the large observations closer to the other
observations and the resulting geometric mean comes closer to a center that is
representative of most of the data.

The median is the middle value in a set of ranked data. Thus, the median of the
numbers 16, 18, 20, 22, and 24 is 20. The median of the numbers 1, 2, 3, 4, and
90 is 3. In both sets of numbers the median represents in some sense the center of
the data, so the median has the advantage of not being sensitive to unusual values.
If the set of data contains an even number of values, then the median lies between
the two middle values, and we usually just take their average. Thus the median of
the data in Table 3.1 lies between 90 and 93 mg/dl, and we would usually say the
median is 91.5 mg/dl.

A percentile is the value of a trait at or below which the corresponding
percentage of a data set lies. If your grade on an examination is at the 90th percentile,
then 90% of those taking the examination obtained the same or a lower grade. The
median is thus the 50th percentile – the point at or below which 50% of the data
points lie. The median is a proper measure of central tendency for data measured
either on an interval or on an ordinal scale, but cannot be used for nominal data.

The mode is defined as the most frequently occurring value in a set of data.
Thus, for the data 18, 19, 21, 21, 22, the value 21 occurs twice, whereas all the other
values occur only once, and so 21 is the mode. In the case of continuous data, the
mode is related to the concept of a peak in the frequency distribution. If there is
only one peak, the distribution is said to be unimodal; if there are two peaks, it is said
to be bimodal, etc. Hence, the distribution depicted in Figure 3.1 is unimodal, and
the mode is clearly between 180 and 190 mg/dl.
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An advantage of the mode is that it can be used for nominal data: the modal
category is simply the category that occurs most frequently. But it is often difficult
to use for a small sample of continuous data. What, for example, is the mode of the
data in Table 3.1? Each value occurs exactly once, so shall we say there is no mode?
The data can be grouped as in Figure 3.2, and then it appears that the 70–90 mg/dl
category is the most frequent. But with this grouping we also see peaks (and hence
modes) at 150–190, 210–230, and 270–290 mg/dl. For this reason the mode is less
frequently used as a measure of central tendency in the case of continuous data.

MEASURES OF SPREAD OR VARIABILITY

Suppose you score 80% on an examination and the average for the class is 87%.
Suppose you are also told that the grades ranged from 79% to 95%. Obviously you
would feel much better had you been told that the spread was from 71% to 99%.
The point here is that it is often not sufficient to know the mean of a set of data;
rather, it is of interest to know the mean together with some measure of spread or
variability.

The range is the largest value minus the smallest value. It provides a simple
measure of variability but is very sensitive to one or two extreme values. The range
of the data in Table 3.1 is 287 − 45 = 242 mg/dl, but it would be only 173 mg/dl if
the two largest values were missing. Percentile ranges are less sensitive and provide
a useful measure of dispersion in data. For example, the 90th percentile minus
the 10th percentile, or the 75th percentile minus the 25th percentile, can be used.
The latter is called the interquartile range. For the data in Table 3.1 the interquartile
range is 124 − 67 = 57 mg/dl. (For 30 values we cannot obtain the 75th and 25th
percentiles accurately, so we take the next lowest percentiles: 124 is the 22nd out
of 30 values, or 73rd percentile, and 67 is the 7th out of 30, or 23rd percentile.)
If the two largest values were missing from the table, the interquartile range would
be 123 − 67 = 56 mg/dl, almost the same as for all 30 values.

The variance or its square root, the standard deviation, is perhaps the most
frequently used measure of variability. The variance, denoted s2, is basically the
average squared deviation from the mean. We compute the variance of a set of data
as follows:

1. Subtract the mean from each value to get a ‘deviation’ from the mean.
2. Square each deviation from the mean.
3. Sum the squares of the deviations from the mean.
4. Divide the sum of squares by one less than the number of values in the set of

data.
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Thus, for the numbers 18, 19, 20, 21, and 22, we find that the mean is (18 + 19 +
20 + 21 + 22)/5 = 20, and the variance is computed as follows:

1. Subtract the mean from each value to get a deviation from the mean, which we
shall call d:

d

18 – 20 = –2
19 – 20 = –1
20 – 20 = 0
21 – 20 = +1
22 – 20 = +2

2. Square each deviation, d, to get squares of deviations, d2:

d d2

−2 4
−1 1

0 0
+1 1
+2 4

3. Sum the squares of the deviations:

4 + 1 + 0 + 1 + 4 = 10.

4. Divide the sum of squares by one less than the number of values in the set of
data:

Variance = s2 = 10
5 − 1

= 10
4

= 2.5.

The standard deviation is just the square root of the variance; that is, in this
example,

Standard deviation = s = √
2.5 = 1.6.

Notice that the variance is expressed in squared units, whereas the standard
deviation gives results in terms of the original units. If, for example, the original
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units for the above data were years (e.g. years of age), then s2 would be 2.5 (years)2,
and s would be 1.6 years.

As a second example, suppose the numbers were 1, 2, 3, 4, and 90. Again, the
average is (1 + 2 + 3 + 4 + 90)/5 = 20, but the data are quite different from those
in the previous example. Here,

s2 = (1 − 20)2 + (2 − 20)2 + (3 − 20)2 + (4 − 20)2 + (90 − 20)2

4

= (−19)2 + (−18)2 + (−17)2 + (−16)2 + 702

4

= 6130
4

= 1532.5.

The standard deviation is s = √
1532.5 = 39.15. Thus, you can see that the vari-

ance and the standard deviation are larger for a set of data that is obviously more
variable.

Two questions you may have concerning the variance and the standard devi-
ation are: Why do we square the deviations, and why do we divide by one less than
the number of values in the set of data being considered? Look back at step 2 and
see what would happen if we did not square the deviations, but simply added up
the unsquared deviations represented above by d. Because of the way in which the
mean is defined, the deviations always add up to zero! Squaring is a simple device to
stop this happening. When we average the squared deviations, however, we divide
by one less than the number of values in the data set. The reason for this is that it
leads to an unbiased estimate, a concept we shall explain more fully in Chapter 6.
For the moment, just note that if the data set consisted of an infinite number of
values (which is conceptually possible for a whole population), it would make no
difference whether or not we subtracted one from the divisor.

The last measure of spread we shall discuss is the coefficient of variation. This
is the standard deviation expressed as a proportion or percentage of the mean. It is
a dimensionless measure and, as such, it is a useful descriptive index for comparing
the relative variability in two sets of values where the data in the different sets
have quite different distributions and hence different standard deviations. Suppose,
for example, that we wished to compare the variability of birth weight with the
variability of adult weight. Clearly, on an absolute scale, birth weights must vary
much less than adult weights simply because they are necessarily limited to being
much smaller. As a more extreme example, suppose we wished to compare the
variability in weights of ants and elephants! In such a situation it makes more sense
to express variability on a relative scale. Thus, we can make a meaningful comparison
of the variability in two sets of numbers with different means by observing the
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difference between their coefficients of variation. As an example, suppose the mean
of a set of cholesterol levels is 219 mg/dl and the standard deviation is 14.3 mg/dl.
The coefficient of variation, as a percentage, is then

CV% = standard deviation
mean

× 100

= 1.43mg/dl
219mg/dl

× 100

= 6.5.

This could then be compared with, for example, the coefficient of variation of
triglyceride levels.

MEASURES OF SHAPE

There are many other descriptive statistics, some of which will be mentioned in
later chapters of this book. We shall conclude this chapter with the names of a few
statistics that describe the shape of distributions. (Formulas for calculating these
statistics, as well as others, are presented in the Appendix.)

mean mode
median

Negatively skewed

meanmode
median

Positively skewed

mean
mode

median
Symmetric

Figure 3.10 Examples of negatively skewed, symmetric, and positively skewed
distributions.

The coefficient of skewness is a measure of symmetry. A symmetric distribution
has a coefficient of skewness that is zero. As illustrated in Figure 3.10, a distribution
that has an extended tail to the left has a negative coefficient of skewness and is
said to be negatively skewed; one that has an extented tail to the right has a positive
coefficient of skewness and is said to be positively skewed. Note that in a symmetric
unimodal distribution the mean, the median, and the mode are all equal. In a
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unimodal asymmetric distribution, the median always lies between the mean and
the mode. The serum triglyceride values in Table 3.1 have a positive coefficient of
skewness, as can be seen in the histogram in Figure 3.2.

The coefficient of kurtosis measures the peakedness of a distribution. In
Chapter 6 we shall discuss a very important distribution, called the normal distribu-
tion, for which the coefficient of kurtosis is 3. A distribution with a larger coefficient
than this is leptokurtic (‘lepto’ means slender), and one with a coefficient smaller
than this is platykurtic (‘platy’ means flat or broad). Kurtosis, or peakedness, is also
often measured by the standardized ‘fourth cumulant’ (denoted g2), also called the
excess kurtosis, which is the coefficient of kurtosis minus 3; on this scale, the nor-
mal distribution has zero kurtosis. Different degrees of kurtosis are illustrated in
Figure 3.11.

Coefficient
of Kurtosis:

g2:
>3
>0

3
0

<3
<0

<3
<0

Bimodel

Figure 3.11 Examples of symmetric distributions with coefficient of kurtosis greater
than 3 (g2>0), equal to 3 (g2=0, as for a normal distribution), and less than 3 (g2<0).

SUMMARY

1. Continuous data arise only from quantitative traits, whereas categorical or dis-
crete data arise either from quantitative or from qualitative traits. Continuous
data are measured on an interval scale, categorical data on either an ordinal
(that can be ordered) or a nominal (name only) scale.

2. Descriptive statistics, tables, and graphs summarize the essential characteristics
of a set of data.

3. A table should be easy to read. The title should indicate what is being tabulated,
with the units of measurement.

4. Bar graphs are used for discrete data, histograms and frequency polygons for
continuous data. A cumulative plot has the advantage that every data point can
be represented in it. A scatter plot or scatter diagram illustrates the relationship
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between two measures. A tree diagram displays a sequence of actions and/or
results.

5. Proportions and rates allow one to compare counts when denominators are
appropriately chosen. The term ‘rate’ properly indicates a measure of rapidity
of change but is often used to indicate a proportion multiplied by some number
other than 100. Prevalence is the number or proportion of cases present at a
particular time; incidence is the number or proportion of new cases occurring
in a specified period.

6. Relative risk is the incidence of disease in a group exposed to a particular
condition, divided by the incidence in a group not so exposed. The odds ratio
is the ratio of the odds in favor of a disease in an exposed group to the odds
in an unexposed group. In the case of a rare disease, the relative risk and the
odds ratio are almost equal. Attributable risk is the incidence of a disease in a
group with a particular condition minus the incidence in a group without the
condition, often expressed as a percentage of the latter.

7. The sensitivity of a test is the proportion of those with the disease who give
a positive result. The specificity of a test is the proportion of those without
the disease who give a negative result. In the case of a rare disease, it is quite
possible for the test to have a low predictive value even though these are both
high. The predictive values are defined as the proportion of the positives that
has the disease and the proportion of the negatives that does not have the
disease.

8. Three measures of central tendency, or location, are the mean (arithmetic aver-
age), the median (50th percentile), and the mode (one or more peak values). All
three are equal in a unimodal symmetric distribution. In a unimodal asymmetric
distribution, the median lies between the mean and the mode.

9. Three measures of spread, or variability, are the range (largest value minus smal-
lest value), the interquartile range (75th percentile minus 25th percentile), and
the standard deviation (square root of the variance). The variance is basically
the average squared deviation from the mean, but the divisor used to obtain
this average is one less than the number of values being averaged. The variance
is expressed in squared units whereas the standard deviation is expressed in the
original units of the data. The coefficient of variation, which is dimensionless,
is the standard deviation divided by the mean (and multiplied by 100 if it is
expressed as a percentage).

10. An asymmetric distribution may be positively skewed (tail to the right) or neg-
atively skewed (tail to the left). A distribution may be leptokurtic (peaked) or
platykurtic (flat-topped or multimodal).
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FURTHER READING

Elandt-Johnson, RC. (1975) Definition of rates: Some remarks on their use and misuse.
American Journal of Epidemiology 102: 267–271. (This gives very precise definitions
of ratios, proportions, and rates; a complete understanding of this paper requires some
mathematical sophistication.)

Stevens, S.S. (1946) On the theory of scales of measurement. Science 103: 677–680. (This
article defines in more detail four hierarchical categories of scales for measurements –
nominal, ordinal, interval, and ratio.)

Wainer, H. (1984) How to display data badly. American Statistician 38: 137–147. (Though
pointed in the wrong direction, this is a serious article. It illustrates the 12 most powerful
methods – the dirty dozen – of misusing graphics.)

PROBLEMS

1. A nominal scale is used for

A. all categorical data
B. discrete data with categories that do not follow a natural sequence
C. continuous data that follow a natural sequence
D. discrete data with categories that follow a natural sequence
E. quantitative data

2. The following are average annual incidences per million for testicular
cancers, New Orleans, 1974–1977:

Age White Black Relative Risk

15–19 29.4 13.4 2.2
20–29 113.6 9.5 12.0
30–39 91.0 49.8 1.8
40–49 75.5 0.0 —
50–59 50.2 22.2 2.3
60–69 0.0 0.0 —
70+ 38.2 0.0 —

Based on these data, which of the following is true of New Orleans males,
1974–1977?

A. There is no difference in the risk of developing testicular cancer for
blacks and whites.

B. The odds of developing testicular cancer are greater in blacks than in
whites.
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C. The racial difference in risk of developing testicular cancer cannot be
determined from these data.

D. The risk of developing testicular cancer is greater in whites than in
blacks in virtually every age group.

3. Refer to the diagram below. Each horizontal line in the diagram indicates
the month of onset and the month of termination for one of 24 episodes
of disease. Assume an exposed population of 1000 individuals in each
month.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

(i) The incidence for this disease during April was

A. 2 per 1000
B. 3 per 1000
C. 6 per 1000
D. 7 per 1000
E. 9 per 1000

(ii) The prevalence on March 31 was

A. 2 per 1000
B. 3 per 1000
C. 6 per 1000
D. 7 per 1000
E. 9 per 1000

4. The incidence of a certain disease during 1987 was 16 per 100,000 per-
sons. This means that for every 100,000 persons in the population of
interest, 16 people

A. had the disease on January 1, 1987
B. had the disease on December 31, 1987
C. developed the disease during 1987
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D. developed the disease each month during 1987
E. had disease with duration 1 month or more during 1987

5. A large study of bladder cancer and cigarette smoking produced the
following data:

Incidence of Bladder Cancer (per

100,000 males per year)

Cigarette smokers 48.0
Nonsmokers 25.4

The relative risk of developing bladder cancer for male cigarette smokers
compared with male nonsmokers is

A. 48.0/25.4 = 1.89
B. unknown
C. 48.0 − 25.4 = 22.6
D. 48.0
E. (48.0 − 25.4)/48.0 = 0.47

6. Both the specificity and sensitivity of a diagnostic test for a particular
disease are 0.99. All the following are necessarily true except

A. a person who is positive for the test has a 99% chance of having the
disease

B. a person without the disease has a 99% chance of being negative for
the test

C. a person has a 99% chance of being correctly classified by the test
D. a person with the disease has a 99% chance of being positive for the

test

7. The specificity of a test is reported as being 0.80. This means that

A. the test gives the correct result in 80% of persons tested
B. disease is present in 80% of persons who test positive
C. disease is absent in 80% of persons who test negative
D. the test is positive in 80% of persons tested who have the

disease
E. the test is negative in 80% of persons tested who are disease-free

8. Most values in a small set of data range from 0 to 35. The data are
highly skewed, however, with a few values as large as 55 to 60. The
best measure of central tendency is the
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A. mean
B. median
C. mode
D. standard deviation
E. range

9. One useful summary of a set of data is provided by the mean and standard
deviation. Which of the following is true?

A. The mean is the middle value (50th percentile) and the standard
deviation is the difference between the 90th and the 10th percentiles.

B. The mean is the arithmetic average and the standard deviation meas-
ures the extent to which observations vary about or are different from
the mean.

C. The mean is the most frequently occurring observation and the
standard deviation measures the length of a deviation.

D. The mean is half the sum of the largest and smallest value and the
standard deviation is the difference between the largest and smallest
observations.

E. None of the above.

10. All of the following are measures of spread except

A. variance
B. range
C. mode
D. standard deviation
E. coefficient of variation

11. The height in centimeters of second-year medical students was recorded.
The variance of these heights was calculated. The unit of measurement
for the calculated variance is

A.
√

centimeters
B. centimeters
C. (centimeters)2

D. unit free
E. none of the above

12. The standard deviation for Dr. A’s data was found to be 10 units, while
that for Dr. B’s data was found to be 15 units. This suggests that Dr. A’s
data are

A. larger in magnitude on average
B. skewed to the right
C. less variable
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D. unbiased
E. unimodal

13. Consider the following sets of cholesterol levels in milligrams per deciliter
(mg/dl):

Set 1: 200, 210, 190, 220, 195
Set 2: 210, 170, 180, 235, 240

The standard deviation of set 1 is

A. the same as that of set 2
B. less than that of set 2
C. greater than that of set 2
D. equal to the mean for set 2
E. indeterminable from these data

14. The following is a histogram for the pulse rates of 1000 students:
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Which of the following is between 70 and 75 beats per minute?

A. The mode of the distribution
B. The median of the distribution
C. The mean of the distribution
D. The range of the distribution
E. None of the above
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15. The following cumulative plot was derived from the pulse of 1000
students:
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Which of the following is false?

A. The range of the distribution is 60 to 100 beats per minute.
B. The mode of the distribution is 100 beats per minute.
C. The median of the distribution is 77 beats per minute.
D. 92% of the values are less than 90 beats per minute.
E. 94% of the values are greater than 65 beats per minute.





CHAPTER FOUR

Key Concepts

three definitions of
probability

the probability of either of two events, the
joint probability of two events,

conditional probability, mutually
exclusive events, independent events

Bayes’ theorem
likelihood ratio





The Laws of Probability

SYMBOLS AND ABBREVIATIONS
P(A) probability of the event A
P(A or B) probability of either event A or event B
P(A and B) joint probability of the events A and B
P(A|B) conditional probability of event A given event B

DEFINITION OF PROBABILITY

Although the meaning of a statement such as ‘The probability of rain today is
50%’ may seem fairly obvious, it is not easy to give an exact definition of the term
probability. In fact, three different definitions have been proposed, each focusing
on a different aspect of the concept. Since probability plays such a fundamental
role in genetics and in statistics in general, we start by reviewing all three of these
definitions before stating the mathematical laws that govern its manipulation. The
mathematicians who originally studied probability were motivated by gambling and
so used games of chance (e.g. cards and dice) in their studies. It will be convenient
for us to use similar examples initially.

The classical definition of probability can be stated as follows: Given a set of
equally likely possible outcomes, the probability of the event A, which for brevity
we write P(A), is the number of outcomes that are ‘favorable to’ A divided by the
total number of possible outcomes:

P(A) = number of outcomes favorable to A
total number of possible outcomes

.

This definition will become clearer when we illustrate it with some examples. Sup-
pose we pick a single card at random from a well-shuffled regular deck of 52 cards
comprising four suits (clubs, diamonds, hearts and spades) with 13 cards in each
suit. Note that when we say a card is drawn at random from a well-shuffled deck of
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52 cards, we imply that each card is equally likely to be selected so that each of the
52 cards has probability 1/52 of being the one selected. What is the probability that
the card is an ace? We let A be the event ‘the card is an ace’. Each card represents a
possible outcome, and so the total number of possible outcomes is 52; the number
of outcomes that are ‘favorable to’ A is 4, since there are four aces in the deck.
Therefore the probability is

P(A) = 4
52

= 1
13

.

As another example, what is the probability of obtaining two sixes when two normal
six-sided dice are rolled? In this example, let A be the event ‘obtaining two sixes’.
Each of the two dice can come up one, two, three, four, five, or six, and so the total
number of possible outcomes is 36 (6 × 6). Only one of these outcomes (six and six)
is ‘favorable to’ A, and so the probability is P(A) = 1/36.

This definition of probability is precise and appears to make sense. Unfortu-
nately, however, it contains a logical flaw. Note that the definition includes the words
‘equally likely’, which is another way of saying ‘equally probable’. In other words,
probability has been defined in terms of probability! Despite this difficulty, our intu-
ition tells us that when a card is taken at random from a well-shuffled deck, or when
normal dice are rolled, there is physical justification for the notion that all possible
outcomes are ‘equally likely’. When there is no such physical justification (as we shall
see in a later example), the classical definition can lead us astray if we are not careful.

The frequency definition of probability supposes that we can perform many,
many replications or trials of the same experiment. As the number of trials tends to
infinity (i.e. to any very large number, represented mathematically by the symbol
∞), the proportion of trials in which the event A occurs tends to a fixed limit.
We then define the probability of the event A as this limiting proportion. Thus, to
answer the question, ‘What is the probability that the card is an ace?’, We suppose
that many trials are performed, in each of which a card is drawn at random from
a well-shuffled deck of 52 cards. After each trial we record in what proportion of
the cards drawn so far an ace has been drawn, and we find that, as the number of
trials increases indefinitely, this proportion tends to the limiting value of 1/13. This
concept is illustrated in Figure 4.1, which represents a set of trials in which an ace
was drawn at the 10th, 20th, 40th, 54th, 66th, and 80th trials.

Since one can never actually perform an infinite number of trials, this defin-
ition of probability is mathematically unsatisfying. Nevertheless, it is the best way
of interpreting probability in practical situations. The statement ‘There is a 50%
probability of rain today’ can be interpreted to mean that on just half of many days
on which such a statement is made, it will rain. Provided this is true, the probability
statement is valid.
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0.0

0.1

0 10 20 30 40 50 60 70 80
Total number of trials

Proportion of
trials in which
an ace has
been drawn

Figure 4.1 Example of probability defined as the limiting proportion of trials, as the
number of trials tends of infinity, in which a particular event occurs.

In genetic counseling, however, quoting valid probabilities may not be suffi-
cient. When a pregnant woman is counseled concerning the probability that her
child will have a particular disease, the probability that is quoted must be both
valid and relevant. Suppose, for example, a 25-year-old woman has a child with
Down syndrome (trisomy 21) and, on becoming pregnant again, seeks counsel-
ing. Her physician checks published tables and finds that the probability of a
25-year-old woman having a Down syndrome child is about 1 in 400. If she is
counseled that the probability of her second child having Down syndrome is only
about 1 in 400, she will have been quoted a valid probability; only 1 in 400 such
women coming for counseling will bear a child with Down syndrome. But this
probability will not be relevant if the first child has Down syndrome because
of a translocation in the mother, that is, because the mother has a long arm of
chromosome 21 attached to another of her chromosomes. If this is the case, the
risk to the unborn child is about 1 in 6. A physician who failed to recommend
the additional testing required to arrive at such a relevant probability for a spe-
cific patient could face embarrassment, perhaps even a malpractice suit, though
the quoted probability, on the basis of all the information available, was perfectly
valid.

The mathematical (axiomatic) definition of probability avoids the disadvant-
ages of the two other definitions and is the definition used by mathematicians.
A simplified version of this definition, which, although incomplete, retains its main
features, is as follows. A set of probabilities is any set of numbers for which: each
number is greater than or equal to zero; and the sum of the numbers is unity (one).
This definition, unlike the other two, gives no feeling for the practical meaning
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of probability. It does, however, describe the essential characteristics of probability:
there is a set of possible outcomes, each associated with a positive probability
of occurring, and at least one of these outcomes must occur. We now turn to
some fundamental laws of probability, which do not depend on which definition is
taken.

THE PROBABILITY OF EITHER OF TWO EVENTS:
A OR B

If A and B are two events, what is the probability of either A or B occurring? That
is, what is the probability that A occurs but B does not, B occurs but A does not,
or both A and B occur? Let us consider a simple example. A regular deck of cards
is shuffled well and a card is drawn. What is the probability that it is either an ace
or a king? The deck contains eight cards that are either aces or kings, and so the
answer is 8/52 = 2/13. Now notice that the two events ‘ace’ and ‘king’ are mutually
exclusive, in that when we draw a card from the deck, it cannot be both an ace and
a king. If A and B are mutually exclusive events, then

P(A or B) = P(A) + P(B).

Thus, in our example, we have

P(ace or king) = P(ace) + P(king)

= 1
13

+ 1
13

= 2
13

.

Now suppose the question had been: ‘What is the probability that the card is
an ace or a heart?’ In this case the events ‘ace’ and ‘heart’ are not mutually exclusive,
because the same card could be both an ace and a heart; therefore we cannot use
the formula given above. How many cards in the deck are either aces or hearts?
There are 4 aces and 13 hearts, but a total of only 16 cards that are either an ace
or a heart: the ace of clubs, the ace of diamonds, the ace of spades, and the 13
hearts. Notice that if we carelessly write ‘4 aces + 13 hearts = 17 cards’, the ace of
hearts has been counted twice – once as an ace and once as a heart. In other words,
the number of cards that are either aces or hearts is the number of aces, plus the
number of hearts, minus the number of cards that are both aces and hearts (one, in
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this example). Analogously, dividing each of these numbers by 52 (the total number
of cards in the deck), we have

P(ace or heart) = P(ace) + P(heart) − P(ace and heart)

= 4
52

+ 13
52

− 1
52

= 16
52

= 4
13

.

The general rule for any two events A and B is

P(A or B) = P(A) + P(B) − P(A and B).

This rule is general, by which we mean it is always true. (A layman uses the word
‘generally’ to mean ‘usually.’ In mathematics a general result is one that is always
true, and the word ‘generally’ means ‘always.’)

If the event A is ‘the card is a king’ and the event B is ‘the card is an ace’, we
have

P(A or B) = P(A) + P(B) − P(A and B)

= 1
13

+ 1
13

− 0 = 2
13

as before. In this example, P(A and B) = 0 because a card cannot be both a king
and an ace. In the special case in which A and B are mutually exclusive events,
P(A and B) = 0.

THE JOINT PROBABILITY OF TWO EVENTS: A AND B

We have just seen that the probability that both events A and B occur is written
P(A and B); this is also sometimes abbreviated to P(AB) or P(A, B). It is often
called the joint probability of A and B. If A and B are mutually exclusive (i.e. they
cannot both occur – if a single card is drawn, for example, it cannot be both an
ace and a king), then their joint probability, P(A and B), is zero. What can we say
about P(A and B) in general? One answer to this question is implicit in the general
formula for P(A or B) just given. Rearranging this formula we find

P(A and B) = P(A) + P(B) − P(A or B).

A more useful expression, however, uses the notion of conditional probability:
the probability of an event occurring given that another event has already occurred.
We write the conditional probability of B occurring given that A has occurred as
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P(B|A). Read the vertical line as ‘given’, so that P(B|A) is the ‘probability of B given
A’ (i.e. given that A has already occurred). Sensitivity and specificity are examples
of conditional probabilities. We have

Sensitivity = P(test positive|disease present),

Specificity = P(test negative|disease absent).

Using this concept of conditional probability, we have the following general
rule for the joint probability of A and B:

P(A and B) = P(A)P(B|A).

Since it is arbitrary which event we call A and which B, note that we could equally
well have written

P(A and B) = P(B)P(A|B).

Using this formula, what is the probability, on drawing a single card from a well-
shuffled deck, that it is both an ace and a heart (i.e. that it is the ace of hearts)? Let
A be the event that the card is an ace and B be the event that it is a heart. Then,
from the formula,

P(ace and heart) = P(ace)P(heart|ace)

= 1
13

× 1
4

= 1
52

.

P(heart|ace) = 1/4, because the ace that we have picked can be any of the four
suits, only one of which is hearts. Similarly, we could have found

P(ace and heart) = P(heart)P(ace|heart)

= 1
4

× 1
13

= 1
52

.

Now notice that in this particular example we have

P(heart|ace) = P(heart) = 1
4

and

P(ace|heart) = P(ace) = 1
13

.
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In other words, the probability of picking a heart is the same (1/4) whether or not
an ace has been picked, and the probability of picking an ace is the same (1/13)
whether or not a heart has been picked. These two events are therefore said to be
independent.

Two events A and B are independent if P(A) = P(A|B), or if P(B) = P(B|A).
From the general formula for P(A and B), it follows that if two events A and B are
independent, then

P(A and B) = P(A)P(B).

Conversely, two events A and B are independent if we know that

P(A and B) = P(A)P(B).

It is often intuitively obvious when two events are independent. Suppose we have
two regular decks of cards and randomly draw one card from each. What is the
probability that the card from the first deck is a king and the card from the second
deck is an ace? The two draws are clearly independent, because the outcome of the
first draw cannot in any way affect the outcome of the second draw. The probability
is thus

1
13

× 1
13

= 1
169

.

But suppose we have only one deck of cards, from which we draw two cards con-
secutively (where after the first card is drawn, it is not put back in the deck before
the other card is drawn so that the second card is drawn from a deck containing
only 51 cards). Now what is the probability that the first is a king and the second is
an ace? Using the general formula for the joint probability of two events A and B,
we have

P(lst is king and 2nd is ace) = P(lst is king)P(2nd is ace|1st is king)

= 4
52

× 4
51

= 4
663

.

In this case the two draws are not independent. The probability that the second
card is an ace depends on what the first card is (if the first card is an ace, for example,
the probability that the second card is an ace becomes 3/51).
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EXAMPLES OF INDEPENDENCE, NONINDEPENDENCE
AND GENETIC COUNSELING

It is a common mistake to assume two events are independent when they are not.
Suppose two diseases occur in a population and it is known that it is impossible for
a person to have both diseases. There is a strong temptation to consider two such
diseases to be occurring independently in the population, whereas in fact this is
impossible. Can you see why this is so? [Hint: Let the occurrence of one disease in
a particular individual be the event A, and the occurrence of the other disease be
event B. What do you know about the joint probability of A and B if (1) they are
independent, and (2) they are mutually exclusive? Can P(A and B) be equal to both
P(A)P(B) and zero if P(A) and P(B) are both nonzero (we are told both diseases
actually occur in the population)?] On the other hand, it is sometimes difficult
for an individual to believe that truly independent events occur in the manner in
which they do occur. The mother of a child with a genetic anomaly may be properly
counseled that she has a 25% probability of having a similarly affected child at
each conception and that all conceptions are independent. But she will be apt to
disbelieve the truth of such a statement if (as will happen to one quarter of mothers
in this predicament, assuming the counseling is valid and she has another child) her
very next child is affected.

NONINDEPENDENCE DUE TO MULTIPLE ALLELISM

Among the Caucasian population, 44% have red blood cells that are agglutinated
by an antiserum denoted anti-A, and 56% do not. Similarly, the red blood cells
of 14% of the population are agglutinated by another antiserum denoted anti-
B, and those of 86% are not. If these two traits are distributed independently
in the population, what proportion would be expected to have red cells that are
agglutinated by both anti-A and anti-B? Let A+ be the event that a person’s red
cells are agglutinated by anti-A, and B+ the event that they are agglutinated by anti-
B. Thus, P(A+)= 0.44 and P(B+)= 0.14. If these two events are independent, we
should expect

P(A + and B+) = P(A+)P(B+) = 0.44 × 0.14 = 0.06.

In reality, less than 4% of Caucasians fall into this category (i.e. have an AB blood
type); therefore, the two traits are not distributed independently in the population.
This finding was the first line of evidence used to argue that these two traits are due
to multiple alleles at one locus (the ABO locus), rather than to segregation at two
separate loci.
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NONINDEPENDENCE DUE TO LINKAGE
DISEQUILIBRIUM

The white cells of 31% of the Caucasian population react positively with HLA anti-
A1, and those of 21% react positively with HLA anti-B8. If these two traits are
independent, we expect the proportion of the population whose cells would react
positively to both antisera to be 0.31 × 0.21 = 0.065 (i.e. 6.5%). In fact, we find
that 17% of the people in the population are both Al positive and B8 positive. In
this case family studies have shown that two loci (A and B), very close together on
chromosome 6, are involved. Nonindependence between two loci that are close
together is termed linkage disequilibrium.

These two examples illustrate the fact that more than one biological phe-
nomenon can lead to a lack of independence. In many cases in the literature,
nonindependence is established, and then, on the basis of that evidence alone, a
particular biological mechanism is incorrectly inferred. In fact, as we shall see in
Chapter 9, nonindependence (or association) can be due to nothing more than the
population comprising two subpopulations.

CONDITIONAL PROBABILITY IN GENETIC
COUNSELING

We shall now consider a very simple genetic example that will help you learn
how to manipulate conditional probabilities. First, recall the formula for the joint
probabilities of events A and B, which can be written (backward) as

P(A)P(B|A) = P(A and B).

Now divide both sides by P(A), which may be done provided P(A) is not zero, and
we find that

P(B|A) = P(A and B)

P(A)
.

This gives us a formula for calculating the conditional probability of B given A,
denoted P(B|A), if we know P(A and B) and P(A). Similarly, if we know P(A and B)
and P(B), we can find

P(A|B) = P(A and B)

P(B)
assuming P(B) is not zero.
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Now consider, as an example, hemophilia, caused by a defect in the blood-
clotting system. This is a rare X-linked recessive disease (i.e. an allele at a locus on
the X-chromosome is recessive with respect to the disease, with the result that a
female requires two such alleles to have the disease but a male only one – because a
male has only one X chromosome), Suppose a carrier mother, who has one disease
allele but not the disease, marries an unaffected man. She will transmit the disease
to half her sons and to none of her daughters (half her daughters will be carriers,
but none will be affected with the disease). What is the probability that she will
bear an affected child? The child must be either a son or a daughter, and these are
mutually exclusive events. Therefore,

P(affected child) = P(affected son) + P(affected daughter)

= P(son and affected) + P(daughter and affected)

= P(son)P(affected|son) + P(daughter)P(affected|daughter).

Assume a 1:1 sex ratio (i.e. P(son) = P(daughter) = 1/2), and use the fact that
P(affected|son) = 1/2. Furthermore, in the absence of mutation (which has such
a small probability that we shall ignore it), P(affected|daughter)= 0. We therefore
have

P(affected child) = 1
2

× 1
2

+ 1
2

× 0 = 1
4

.

Now suppose an amniocentesis is performed and thus the gender of the fetus
is determined. If the child is a daughter, the probability of her being affected is
virtually zero. If, on the other hand, the child is a son, the probability of his being
affected is one half. Note that we can derive this probability by using the formula
for conditional probability:

P(affected|son) = P(son and affected)

P(son)

= 1/4
1/2

= 1
2

.

Of course in this case you do not need to use the formula to obtain the correct answer,
but you should nevertheless be sure to understand the details of this example.
Although a very simple example, it illustrates how one proceeds in more complicated
examples. Notice that knowledge of the gender of the child changes the probability
of having an affected child from 1/4 (before the gender was known) either to 1/2
(in the case of a son) or to 0 (in the case of a daughter). Conditional probabilities
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are used extensively in genetic counseling. We shall now discuss the use of a very
general theorem that gives us a mechanism for adjusting the probabilities of events
as more information becomes available.

BAYES’ THEOREM

The Englishman Thomas Bayes wrote an essay on probability that he did not
publish – perhaps because he recognized the flaw in assuming, as he did in his
essay, that all possible outcomes are equally likely (this explanation of why he did
not publish is disputed). The essay was nevertheless published in 1763, after his
death, by a friend. What is now called Bayes’ theorem does not contain this flaw.
The theorem gives us a method of calculating new probabilities to take account of
new information. Suppose that 20% of a particular population has a certain disease,
D. For example, the disease might be hypertension, defined as having an average
diastolic blood pressure of 95 mmHg or greater taken once a day over a period of
5 days.

P (D ) P (D )

1

1

0

Figure 4.2 In the whole population, represented by a square whose sides are unity, the
probability of having the disease is P(D), and of not having the disease is P(D), as

indicated along the horizontal axis.

In Figure 4.2 we represent the whole population by a square whose sides are
unity. The probability that a person has the disease, P(D), and the probability that a
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person does not have the disease, P(D)= 1 − P(D), are indicated along the bottom
axis. Thus the areas of the two rectangles are the same as these two probabilities.

Now suppose we have a test that picks up a particular symptom S associated
with the disease. In our example, the test might be to take just one reading of
the diastolic blood pressure, and S might be defined as this one pressure being
95 mmHg or greater. Alternatively, we could say that the test result is positive if
this one blood pressure is 95 mmHg or greater, negative otherwise. Before being
tested, a random person from the population has a 20% probability of having the
disease. How does this probability change if it becomes known that the symptom
is present?

P (D )

P (S |D )
P (S |D )

P (D )

Figure 4.3 Within each subpopulation, D and D, the conditional probability of having a
positive test result or symptom, S, is indicated along the vertical axis. The rectangles
represent the joint probabilities P(D)P(S|D) = P(S,D) and P(D)P(S|D) = P(S, D).

Assume that the symptom is present in 90% of all those with the disease but
only 10% of all those without the disease, that is, P(S|D) = 0.9 and P(S|D) = 0.1.
In other words, the sensitivity and the specificity of the test are both 0.9. These
conditional probabilities are indicated along the vertical axis in Figure 4.3. The
gray rectangles represent the joint probabilities that the symptom is present and
that the disease is present or not:

P(S and D) = P(D)P(S|D) = 0.2 × 0.9 = 0.18,

P(S and D) = P(D)P(S|D) = 0.8 × 0.1 = 0.08.
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If we know that the symptom is present, then we know that only the gray areas are
relevant, that is, we can write, symbolically,

P (D IS ) = P (D I )  =

+

= P(S and D)

P(S and D) + P(S and D)
= P(D)P(S|D)

P(D)P(S|D) + P(D)P(S|D)

= 0.2 × 0.9
0.2 × 0.9 + 0.8 × 0.1

= 0.69,

which is the positive predictive value of the test. This, in essence, is Bayes’ theorem.
We start with a prior probability of the disease, P(D), which is then converted into
a posterior probability, P(D|S), given the new knowledge that the symptom S is
present.

More generally, we can give the theorem as follows. Let the new information
that is available be that the event S occurred. Now suppose the event S can occur in
anyone of k distinct, mutually exclusive ways. Call these ways D1, D2, . . . , Dk (in the
above example there were just two ways, the person either had the disease or did not
have the disease; in general, there may be k alternative diagnoses possible). Suppose
that with no knowledge about S, these have prior probabilities P(D1), P(D2), . . . ,
and P(Dk), respectively. Then the theorem states that the posterior probability of a
particular D, say Dj, conditional on S having occurred, is

P(Dj|S) = P(Dj)P(S|Dj)

P(D1)P(S|D1) + P(D2)P(S|D2) + · · · + P(Dk)P(S|Dk)

= P(Dj and S)

P(D1 and S) + P(D2 and S) + · · · + P(Dk and S)
.

The theorem can thus be remembered as ‘the joint probability of interest
divided by the sum of all the joint probabilities’ (i.e. the posterior probability of a
particular D, given that S has occurred, is equal to the joint probability of D and
S occurring, divided by the sum of the joint probabilities of each of the Ds and S
occurring). This is illustrated in Figure 4.4.
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P (S IDj)

P (D1)

P (Dj

P (D2 
) P (Dj 
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)   =
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Figure 4.4 Bayes’ theorem. The probabilities of various diagnoses, D1, D2 . . .Dj . . .Dk,
are indicated on the horizontal axis and the conditional probability of a particular

symptom, within each diagnostic class Dj, is indicated on the vertical axis. Thus each
hatched rectangle is the joint probability of the is the joint probability of the symptom and

a diagnostic class.

In order to illustrate how widely applicable Bayes’ theorem is, we shall consider
some other examples. First, suppose that a woman knows that her mother carries the
allele for hemophilia (because. her brother and her maternal grandfather both have
the disease). She is pregnant with a male fetus and wants to know the probability
that he will be born with hemophilia. There is a 1/2 probability that she has inherited
the hemophilia allele from her mother, and a 1/2 probability that (given that she
inherited the allele) she passes it on to her son. Thus, if this is the only information
available, the probability that her son will have hemophilia is 1/4. This is illustrated
in Figure 4.5(a). Now suppose we are told that she already has a son who does not
have hemophilia (Figure 4.5(b)). What is now the probability that her next son will
be born with hemophilia? Is it the same, is it greater than 1/4, or is it less than
1/4? That she has already had a son without hemophilia is new information that
has a direct bearing on the situation. In order to see this, consider a more extreme
situation: suppose she has already had 10 unaffected sons. This would suggest that
she did not inherit the allele from her mother, and if that is the case she could not
pass it on to her future sons. If, on the other hand, she already has had a son with
hemophilia, she would know without a doubt that she had inherited the allele from
her mother and every future son would have a 1/2 probability of being affected.
Thus, the fact that she has had one son who is unaffected decreases the probability
that she inherited the hemophilia allele, and hence the probability that her second
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?
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Figure 4.5 A woman (©) with a hemophilic brother (�) and a carrier mother (�),
married to a normal male (�), is pregnant with a male fetus(?), for whom we want to

calculate the probability of having hemophilia: (a) with no other information, (b) when she
already has a son who does not have hemophilia.

son will be affected. We shall now use Bayes’ theorem to calculate the probability
that the woman inherited the allele for hemophilia, given that she has a son without
hemophilia. We have k = 2 and define the following events:

S = the woman has an unaffected son,
D1 = the woman inherited the hemophilia allele,
D2 = the woman did not inherit the hemophilia allele.

Before we know that she has an unaffected son, we have the prior probabilities

P(D1) = P(D2) = 1
2

.

Given whether or not she inherited the hemophilia allele, we have the conditional
probabilities

P(S|D1) = 1
2

, P(S|D2) = 1.

Therefore, applying Bayes’ theorem, the posterior probability that she inherited
the hemophilia allele is

P (D1|S) = P (D1)P (S|D1)

P (D1)P (S|D1) + P (D2)P (S|D2)

=
1
2

× 1
2

1
2

× 1
2

+ 1
2

× 1
= 1

3
.
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Thus, given all that we know, the probability that the woman inherited the
hemophilia allele is 1/3. Therefore, the probability that her second son is affected,
given all that we know, is one half of this, 1/6. Note that P(S) = 1/6 is less than
the 1/4 probability that would have been appropriate if she had not already had a
normal son. In general, the more unaffected sons we know she has, the smaller the
probability that her next son will be affected.

Let us take as another example a situation that could arise when there is
suspected non-paternity. Suppose a mother has blood type A (and hence genotype
AA or AO), and her child has blood type AB (and hence genotype AB). Thus, the
child’s A allele came from the mother and the B allele must have come from the
father. The mother alleges that a certain man is the father, and his blood is typed.
Consider two possible cases:

CASE 1

The alleged father has blood type O, and hence genotype OO. Barring a mutation,
he could not have been the father: this is called an exclusion. Where there is an
exclusion, we do not need any further analysis.

CASE 2

The alleged father has blood type AB, and therefore genotype AB, which is relatively
rare in the population. Thus, not only could the man be the father, but he is also
more likely to be the father than a man picked at random (who is much more likely
to be O or A, and hence not be the father). In this case we might wish to determine,
on the basis of the evidence available, the probability that the alleged father is in
fact the true father. We can use Bayes’ theorem for this purpose, provided we are
prepared to make certain assumptions:

1. Assume there have been no blood-typing errors and no mutation, and that we
have the correct mother. It follows from this assumption that the following two
events occurred: (i) the alleged father is AB; and (ii) the child received B from
the true father (call this event S).

2. Assume we can specify the different, mutually exclusive ways in which S could
have occurred. For the purposes of this example we shall suppose there are just
two possible ways in which event S could have occurred (i.e. k = 2 again in the
theorem):

(i) The alleged father is the true father (D1). We know from Mendelian genetics
that the probability of a child receiving a B allele from an AB father is 0.5,
that is, P(S|D1) = 0.5.
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(ii) Or a random man from a specified population is the true father (D2). We
shall assume that the frequency of the allele B in this population is 0.06, so
that P(S|D2) = 0.06. The probability that a B allele is passed on to a child
by a random man from the population is the same as the probability that a
random allele in the population at the ABO locus is B (i.e. the population
allele frequency of B).

3. Assume we know the prior probabilities of these two possibilities. As explained
in the Appendix, these could be estimated from the previous experience of
the laboratory doing the blood typing. We shall assume it is known that 65%
of alleged fathers whose cases are typed in this laboratory are in fact the true
fathers of the children in question, that is, P(D1) = 0.65 and P(D2) = 0.35.

We are now ready to use the formula substituting P(D1) = 0.65, P(D2) = 0.35,
P(S|D1) = 0.5 and P(S|D2) = 0.06. Thus we obtain

P(D1|S) = 0.65 × 0.5
0.65 × 0.5 + 0.35 × 0.06

= 0.325
0.325 + 0.021

= 0.94.

A summary of this application of Bayes’ theorem is shown by means of a tree diagram
in Figure 4.6.

True father is

P (D1) = 0.65

P (S ID1) = 0.5 P (S ID2) = 0.06

P (D2) = 0.35

Alleged father Random caucasian

Passes B allele to child Passes B allele to child

P (S and D1) = 0.65 × 0.5 = 0.325 P (S and D2) = 0.35 × 0.06 = 0.021

P (D1IS ) = = 0.94
0.325

0.325 + 0.021

Figure 4.6 Calculation of the probability that the father of a child is the alleged father,
on the basis of ABO blood types, using Bayes’ theorem.
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Thus, whereas the alleged father, considered as a random case coming to this
particular paternity testing laboratory, originally had a 65% probability of being the
true father, now, when we take the result of this blood typing into consideration as
well, he has a 94% probability of being the true father. In practice, paternity testing
is done with a special panel of genetic markers that usually results in either one or
more exclusions or a very high probability of paternity. We can never prove that the
alleged father is the true father, because a random man could also have the same
blood type as the true father. But if enough genetic systems are typed, either an
exclusion will be found or the final probability will be very close to unity. In fact it
is possible, using the many new genetic systems that have been discovered in DNA
(obtainable from the white cells of a blood sample), to exclude virtually everyone
except the monozygotic twin of the true father.

Several points should be noted about the use of Bayes’ theorem for calculating
the ‘probability of paternity’. First, when the method was initially proposed, it
was assumed that P(D1) = P(D2) = 0.5 (and in fact, there may be many who still
misguidedly make this assumption). The argument given was that the alleged father
was either the true father or was not, and in the absence of any knowledge about
which was the case, it would seem reasonable to give these two possibilities equal
prior probabilities. To see how unreasonable such an assumption is, consider the
following. If I roll a die, it will come up either a ‘six’ or ‘not a six’. Since I do not
know which will happen, should I assume equal probabilities for each of these
two possibilities? In fact, of course, previous experience and our understanding
of physical laws suggest that the probability that a fair die will come up a ‘six’ is
1/6, whereas the probability it will come up ‘not a six’ is 5/6. Similarly, we should
use previous experience and our knowledge of genetic theory to come up with a
reasonable prior probability that the alleged father is the true father.

Second, although the probability of paternity obtained in this way may be per-
fectly valid, it may not be relevant for the particular man in question. A blood-typing
laboratory may validly calculate a 99% probability of paternity for 100 different men,
and exactly one of these men may not be the true father of the 100 children con-
cerned. But if it were known, for that one man, that he could not have had access to
the woman in question, the relevant prior probability for him would be 0. It was a
step forward when blood-typing evidence became admissible in courts of law, but it
would be a step backward if, on account of this, other evidence were ignored. The
so-called probability of paternity summarizes the evidence from the blood-typing
only.

Last, always remember that probabilities depend on certain assumptions. At
the most basic level, a probability depends on the population of reference. Thus,
when we assumed P(S|D2) = 0.06, we were implicitly assuming a population of
men in which the frequency of the B allele is 0.06 – which is appropriate for
Caucasians but not necessarily for other racial groups. Had we not wished to make
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this assumption, but rather that the father could have been from one of two different
racial groups, it would have been necessary to assume the specific probabilities that
he came from each of those racial groups. A posterior probability obtained using
Bayes’ theorem also assumes we know all the possible ways that the event B can
occur and can specify an appropriate prior probability for each. In our example,
we assumed that the true father was either the alleged father – the accused man –
or a random Caucasian man. But could the true father have been a relative of the
woman? Or a relative of the accused man – perhaps his brother? We can allow for
these possibilities when we use Bayes’ theorem, because in the general theorem we
are not limited to k = 2, but then we must have an appropriate prior probability for
each possibility. In practice, it may be difficult to know what the appropriate prior
probabilities are, even if we are sure that no relatives are involved.

The examples given above have been kept simple for instructive purposes.
Nevertheless, you should begin to have an idea of the powerful tool provided by
Bayes’ theorem. It allows us to synthesize our knowledge about an event to update
its probability as new knowledge becomes available. With the speed of modern
computers it is practical to perform the otherwise tedious calculations even in a
small office setting.

LIKELIHOOD RATIO

If, in paternity testing, we do not know or are unwilling to assume particular prior
probabilities, it is impossible to derive a posterior probability. But we could measure
the strength of the evidence that the alleged father is the true father by the ratio
P(S|D1)/P(S|D2) = 0.5/0.06 = 8.3, which in this particular situation is called the
‘paternity index’. It is simply the probability of what we observed (the child receiving
allele B from the true father) if the alleged father is in fact the father, relative to
the probability of what we observed if a random Caucasian man is the father. This
is an example of what is known as a likelihood ratio. If we have any two hypotheses
D1 and D2 that could explain a particular event S, then the likelihood ratio of D1

relative to D2 is defined as the ratio P(S|D1)/P(S|D2). The conditional probability
P(S|D1) – the probability of observing S if the hypothesis D1 (‘the alleged father
is the true father’) is true – is also called the ‘likelihood’ of the hypothesis D1 on
the basis of S having occurred. Similarly, P(S|D2) would be called the likelihood
of D2. The likelihood ratio is a ratio of two conditional probabilities and is used
to assess the relative merits of two ‘conditions’ (D1 versus D2) or hypotheses. This
likelihood ratio is also a special case of what is known as a Bayes factor, which is
also used to assess the relative merits of two hypotheses. These concepts have many
applications in statistics. We shall discuss likelihood ratios and Bayes factors further
in Chapter 8.
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SUMMARY

1. The probability of event A is classically defined as the number of outcomes
that are favorable to A divided by the total number of possible outcomes. This
definition has the disadvantage that it requires one to assume that all possible
outcomes are equiprobable. The frequency definition assumes one can perform
a trial many times and defines the probability of A as the limiting proportion, as
the number of trials tends to infinity, of the trials in which A occurs. The axiomatic
definition of probability is simply a set of positive numbers that sum to unity.

2. A valid probability need not be the clinically relevant probability; the patient
at hand may belong to a special subset of the total population to which the
probability refers.

3. The probability of A or B occurring is given by

P(A or B) = P(A) + P(B) − P(A and B).

If A and B are mutually exclusive events, then P(A and B) = 0.

4. The joint probability of A and B occurring is given by

P(A and B) = P(A)P(B|A) = P(B)P(A|B).

If A and B are independent, P(A and B) = P(A)P(B), and conversely, if
P(A and B) = P(A)P(B), then A and B are independent. Many different bio-
logical mechanisms can be the cause of dependence. Mutually exclusive events
are never independent.

5. The conditional probability of A given B is given by

P(A|B) = P(A and B)

P(B)
.

6. Bayes’ theorem states that the posterior probability that a particular Dj occurred,
after it is known that the event S has occurred, is equal to the joint probability of
Dj and S divided by the sum of the joint probabilities of each possible D and S:

P(Dj|S) = P(Dj and S)

P(D1 and S) + P(D2 and S) + · · · + P(Dk and S)

= P(Dj)P(S|Dj)

P(D1)P(S|D1) + P(D2)P(S|D2) + · · · + P(Dk)P(S|Dk)
.
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It is assumed that we can specify a complete set of mutually exclusive ways in
which S can occur, together with the prior probability of each. It does not assume
that these prior probabilities are all equal.

7. When the prior probabilities of D1 and D2 are unknown, we can consider
P(S|D1)/P(S|D2), the likelihood ratio of D1 versus D2, as a summary of the
evidence provided by the event S relative to D1 and D2.

FURTHER READING

Inglefinger, J.A., Mosteller, F., Thibodeaux, L.A., and Ware, J.B. (1983) Biostatistics in
Clinical Medicine. New York: Macmillan. (Chapter 1 gives several good examples of
probability applied to clinical cases.)

Wackerly, D.D., Mendenhall, W., and Scheaffer, R.L. (2002) Mathematical Statistics with
Applications, 6th edn. Pacific Grove, CA: Duxbury. (Although written at a more
mathematical level, the first few chapters contain many examples and exercises on
probability.)

PROBLEMS

Problems 1–4 are based on the following: For a particular population, the
lifetime probability of contracting glaucoma is approximately 0.007 and
the lifetime probability of contracting diabetes is approximately 0.020.
A researcher finds (for the same population) that the probability of contracting
both of these diseases in a lifetime is 0.0008.

1. What is the lifetime probability of contracting either glaucoma or dia-
betes?

2. What is the lifetime probability of contracting glaucoma for a person who
has, or will have, diabetes?

3. What is the lifetime probability of contracting diabetes for a person who
has, or will have, glaucoma?
Possible answers for Problems 1–3 are

A. 0.0400
B. 0.0278
C. 0.0296
D. 0.0262
E. 0.1143
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4. On the basis of the information given, which of the following conclu-
sions is most appropriate for the two events, contracting glaucoma and
contracting diabetes? They

A. are independent
B. are not independent
C. have additive probabilities
D. have genetic linkage
E. have biological variability

5. A certain operation has a fatality rate of 30%. If this operation is performed
independently on three different patients, what is the probability that all
three operations will be fatal?

A. 0.09
B. 0.90
C. 0.009
D. 0.027
E. 0.27

6. The probability that a certain event A occurs in a given run of an experi-
ment is 0.3. The outcome of each run of this experiment is independent
of the outcomes of other runs. If the experiment is run repeatedly until
A occurs, what is the probability exactly four runs will be required?

A. 0.0531
B. 0.1029
C. 0.2174
D. 0.4326
E. 0.8793

7. A small clinic has three physicians on duty during a standard work week.
The probabilities that they are absent from the clinic at any time during a
regular work day because of a hospital call are 0.2, 0.1 and 0.3, respect-
ively. If their absences are independent events, what is the probability
that at least one physician will be in the clinic at all times during a regular
work day? (Disregard other types of absences.)

A. 0.006
B. 0.251
C. 0.496
D. 0.813
E. 0.994
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8. If two thirds of patients survive their first myocardial infarction and one
third of these survivors is still alive 10 years after the first attack, then
among all patients who have a myocardial infarction, what proportion will
die within 10 years of the first attack? (Hint: Draw a tree diagram.)

A. 1/9
B. 2/9
C. 1/3
D. 2/3
E. 7/9

9. If 30% of all patients who have a certain disease die during the first year
and 20% of the first-year survivors die before the fifth year, what is the
probability an affected person survives past 5 years? (Hint: Draw a tree
diagram.)

A. 0.50
B. 0.10
C. 0.56
D. 0.06
E. 0.14

10. Suppose that 5 men out of 100 and 25 women out of 10,000 are col-
orblind. A colorblind person is chosen at random. What is the probability
the randomly chosen person is male? (Assume males and females to be
in equal numbers.)

A. 0.05
B. 0.25
C. 0.75
D. 0.95
E. 0.99

11. A mother with blood type B has a child with blood type O. She alleges
that a man whose blood type is O is the father of the child. What is
this likelihood that the man is the true father, based on this information
alone, relative to a man chosen at random from a population in which the
frequency of the O allele is 0.67?

A. 0.33
B. 1.49
C. 2.00
D. 0.50
E. 0.67
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12. There is a 5% chance that the mother of a child with Down syndrome
has a particular chromosomal translocation, and if she has that translo-
cation, there is a 16% chance that a subsequent child will have Down
syndrome; otherwise the chance of a subsequent child having Down
syndrome is only 1%. Given these facts, what is the probability, for
a woman with a Down syndrome child, that her next child has Down
syndrome?

A. 0.21
B. 0.16
C. 0.05
D. 0.02
E. 0.01

13. A person randomly selected from a population of interest has a probability
of 0.01 of having a certain disease which we shall denote D. The prob-
ability of a symptom S, which may require a diagnostic test to evaluate
its presence or absence, is 0.70 in a person known to have the disease.
The probability of S in a person known not to have the disease is 0.02.
A patient from this population is found to have the symptom. What is the
probability this patient has the disease?

A. 0.01
B. 0.02
C. 0.26
D. 0.53
E. 0.95

14. When the prior probabilities of D1 and D2 are unknown, the quantity
P(S|D1)/P(S|D2) is called

A. the risk of S given D2

B. the correlation ratio attributable to D1 and D2

C. Bayes’ theorem
D. the joint probability of D1 and D2 occurring in the presence of S
E. the likelihood ratio of the evidence provided by S for D1 relative to D2

15. Let E be the event ‘exposed to a particular carcinogen’, N the event ‘not
exposed to the carcinogen’, and D the event ‘disease present’. If the
likelihood ratio P(D|E)/P(D|N) is 151.6, this can be considered to be a
summary of the evidence that

A. disease is more likely to occur in the exposed
B. exposure is more probable in the diseased
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C. the conditional probability of disease is less than the unconditional
probability

D. the conditional probability of disease is equal to the unconditional
probability

E. the events D and E are mutually exclusive





CHAPTER FIVE

Key Concepts

variable, random variable, response
variable, variate

parameter
probability (density) function, cumulative

probability distribution function

binomial, Poisson, uniform, and normal
(Gaussian) distributions

standardized, standard normal
distribution





Random Variables and
Distributions

SYMBOLS AND ABBREVIATIONS
e irrational mathematical constant equal to about 2.71828
f(y) (probability) density function
F(y) cumulative (probability) distribution function
n sample size; parameter of the binomial distribution
p sample proportion
x, y particular values of (random) variables
X, Y random variables
Z standardized normal, random variable
� parameter of the Poisson distribution (Greek letter

lambda)
� population proportion, a parameter of the binomial

distribution (Greek letter pi)
� population mean (Greek letter mu)
� population standard deviation (Greek letter sigma)
! factorial

VARIABILITY AND RANDOM VARIABLES

A general term for any characteristic or trait we might measure on a person or
other unit of study is variable. A person’s height, weight, and blood pressure are
examples of variables. These traits are variable (and hence called variables) for two
main reasons.

First, measurement error causes the values we measure to differ, even though
we may be repeatedly measuring exactly the same thing. Broadly speaking, meas-
urement error includes errors of misclassification, variability in the measuring
instruments we use, and variability among observers in how they read those

Basic Biostatistics for Geneticists and Epidemiologists: A Practical Approach R. Elston, W. Johnson
c© 2008 John Wiley & Sons, Ltd
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instruments. For example, no two mercury sphygmomanometers are exactly the
same and their readings may be slightly different. Even if a group of doctors all
view the same film of the movement of mercury in such an instrument, together
with listening to the sounds heard in the stethoscope, they will nevertheless not
all agree on how they read the diastolic and systolic blood pressures. Similarly, if
identical blood samples are sent for lipid analyses to two different laboratories –
or even to the same laboratory but under different names – the results that are
returned will be different.

Second, there is inherent variability in all biological systems. There are differ-
ences among species, among individuals within a species, and among parts of an
individual within an individual. No two human beings have exactly the same height
and weight at all stages of their growth; no two muscle cells have exactly the same
chemical composition. The same person, or the same muscle cell, changes with age,
time of day, season of the year, and so forth. A person’s blood pressure, for example,
can fluctuate widely from moment to moment depending on how nervous or fearful
the person is.

When a variable is observed as part of an experiment or a well-defined sampling
process, it is usually called a response variable, random variable, or variate. In this
context, we think of each observation in a set of data as the outcome of a random
variable. For example, consider a family in which there is a given probability that
a child is affected with some disease. Then whether or not a child is affected is the
outcome of a discrete random variable. We often assign arbitrary numbers to the
outcomes of such a random variable, for instance, 0 if not affected, 1 if affected.
In other settings, variables such as blood pressure measurements and cholesterol
levels are continuous random variables.

Data of all types, but especially those that involve observations on a large
number of subjects, are difficult to interpret unless they are organized in a way that
lends itself to our seeing general patterns and tendencies. A first and important
way of organizing data to obtain an overview of the patterns they display is to
construct a frequency distribution, as we described in Chapter 3. Here we shall
be concerned with probability distributions. A probability distribution is a model
for a random variable, describing the way the probability is distributed among the
possible values the random variable can take on. As we saw in Chapter 4, probability
can be interpreted as relative frequency in an indefinitely large number of trials.
The distributions we shall now describe are theoretical ones, but nevertheless ones
that are of great practical importance and utility. Mathematically, the concepts of
‘probability distribution’ and ‘random variable’ are interrelated, in that each implies
the existence of the other; a random variable must have a probability distribution
and a probability distribution must be associated with a random variable. If we
know the probability distribution of a random variable, we have at our disposal
information that can be extremely useful in studying the patterns and tendencies
of data associated with that random variable. Many mathematical models have
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been developed to describe the different shapes a probability distribution can have.
One broad class of such models has been developed for discrete random variables;
a second class is for continuous random variables. In the following sections we
describe just a few common models to introduce you to the concept.

BINOMIAL DISTRIBUTION

Let us start with a simple dichotomous trait (a qualitative trait that can take on
one of only two values). Consider a rare autosomal dominant condition such as
achondroplasia (a type of dwarfism). Let the random variable we are interested
in be the number of children with achondroplasia in a family. Suppose a couple,
one of whom has achondroplasia – and because the disease is rare the parent with
achondroplasia is heterozygous for the disease allele – has a single child. Then the
random variable is dichotomous (it must be 0 or 1, i.e. it is 0 if the child is unaffected
and 1 if the child is affected), and the probability the child is unaffected is ½. We
thus have the probability distribution for a random variable that has values 0 and 1
with probabilities given by

P(0) = 1
2

, P(1) = 1
2

,

which we can graph as in Figure 5.1(a). If we call the random variable Y, we can
also write this as

P(Y = 0) = 1
2

, P(Y = 1) = 1
2

.

This completely describes the probability distribution of the random variable Y
for this situation. Note that the distribution is described by a function of Y. This
function, which gives us a rule for calculating the probability of any particular value
of Y, is called a probability function.

Now suppose the couple has two children; then the random variable Y, the
number affected, can take on three different values: 0, 1, or 2. (Note that this
is a discrete random variable measured on an ordinal scale.) Using the laws of
probability and the fact that each conception is an independent event (we shall
exclude the possibility of monozygotic twins), we have

P(0) = P(1st child unaffected and 2nd child unaffected)

= P(1st child unaffected) × P(2nd child unaffected
∣∣1st child unaffected)

= 1
2

× 1
2

= 1
4

,
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P(1) = P(one child affected)

= P(1st child affected and 2nd child unaffected)

+ P(1st child unaffected and 2nd child affected)

= P(1st child affected) × P(2nd child unaffected
∣∣1st child affected)

+ P(1st child unaffected) × P(2nd child affected
∣∣1st child unaffected)

= 1
2

× 1
2

+ 1
2

× 1
2

= 1
2

,

P(2) = P(both children affected)

= P(1st child affected) × P(2nd child affected|1st child affected)

= 1
2

× 1
2

= 1
4

.
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Figure 5.1 Probability distribution of number of children affected when the probability
of each child being affected is ½ and the total number of children in a family is

(a) 1, (b) 2, (c) 3, and (d) 4.

Note carefully that there are two mutually exclusive ways in which Y can take on
the value 1: either the first child is affected or the second child is affected, and the
other is not. This is why we simply added the two probabilities. In summary, for a
family of two children, we have the probability function
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P (0) = 1
4

, P (1) = 1
2

, P (2) = 1
4

,

which is graphed in Figure 5.1(b).
Using the same kind of argument, we find that the probability function of Y in

a family with three children is

P (0) = 1
8

, P (1) = 3
8

, P (2) = 3
8

, P (3) = 1
8

,

and for a family of four children we find

P (0) = 1
16

, P (1) = 1
4

, P (2) = 3
8

, P (3) = 1
4

, P (4) = 1
16

.

These are graphed in Figures 5.1(c, d).
All the probability functions we have so far considered are special cases of the

binomial probability distribution, or simply the binomial distribution. The expres-
sion ‘binomial distribution’ is used to name a family of many different distributions,
a particular member of this family being determined by the values of two (non-
random) variables called parameters. Suppose we perform n independent trials,
and at each trial the probability of a particular event is �. Then n and � are
the parameters of the distribution. In the above examples n is the number of
children in the family and � is the probability that each should have achondro-
plasia. The probability that the event (achondroplasia) occurs in exactly y out of
the n trials (children in the family) is given by the binomial probability distribu-
tion with parameters n and �, and is expressed mathematically by the probability
function

P(y) = n!
y!(n − y)!π

y(1 − π)n−y, for y = 0, 1, 2, . . . , n.

In this formula, read n! as ‘n factorial’ or ‘factorial n’; it is equal to n × (n −
1) × (n − 2) ×. . .× 2 × 1. For example, 3! = 3 × 2 × 1 = 6. To use the formula,
you may need to use the fact that 0! is defined to be unity (i.e. 0! = 1). Also,
remember that any number raised to the power zero is unity (e.g. (½)0 = 1). Con-
sider, for example, finding the probability that, in a family of four children with
one achondroplastic parent, no children will be affected. Here the parameters



112 BASIC BIOSTATISTICS FOR GENETICISTS AND EPIDEMIOLOGISTS

are n = 4 and � = ½, and we want to evaluate the probability function for y = 0.
Thus

P(0) = 4!
0!(4 − 0)!

(
1
2

)0 (
1 − 1

2

)4−0

= 4!
4! × 1 ×

(
1
2

)4

=
(

1
2

)4

= 1
16

.

Note that, in general the probability of no events of the type being considered
occurring in a total of n trials is P(0) = (1 − �)n. Conversely, the probability of
more than zero (i.e. at least one) such events occurring must be the complement
of this (‘complement of’ means ‘one minus’), 1 − (1 − �)n. Finally, remember that
the binomial probability distribution is relevant for a pre-specified number n of
independent trials in each of which there is the same probability � of a particular
event occurring. Binomial probabilities are often relevant in genetics because each
conception can be considered an independent event with the same probability of
resulting in a child having a given condition.

A NOTE ABOUT SYMBOLS

You may have noticed that we originally used the capital letter Y to denote a random
variable, but when we gave the formula for the binomial distribution we used the
small letter y. Throughout this book we shall use capital Latin letters for random
variables and the corresponding small Latin letters to denote a particular value
of that random variable. Notice that P(y) is a shorthand way of writing P(Y = y),
the probability that the random variable Y takes on the particular value y (such as
0, 1, 2, . . . .). Making this distinction now will make it easier to understand some of
the concepts we discuss in later chapters. Just remember that a capital letter stands
for a random variable, which can take on different values, whereas a lowercase letter
stands for a particular one of these different values. We shall also, for the most part,
use Greek letters for unknown population parameters. To illustrate, we shall use p
for the proportion of affected children we might observe in a sample of children,
but � for the theoretical probability that a child should be affected. (Since it is not
universal, however, this convention will not be followed in all the problems.) The
Greek letter � will also be used later in this chapter with its usual mathematical
meaning of the ratio of the circumference of a circle to its diameter. In the next
section we shall need to use the theoretical quantity that mathematicians always
denote by the Latin letter e. Like �, e cannot be expressed as a rational number; it
is approximately 2.71828.
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POISSON DISTRIBUTION

Another important family of discrete distributions is the Poisson distribution, named
after the French mathematician S.D. Poisson (1791–1840). This can often be used
as a model for random variables such as radioactive counts per unit of time, the
number of calls arriving at a telephone switchboard per unit of time, or the number
of bacterial colonies per Petri plate in a microbiology study. If y is a particular value
of a random variable that follows a Poisson distribution, then the probability that
this value will occur is given by the formula

P(y) = �ye−�

y! , for y = 0, 1, 2, . . . ,

where the parameter � is the mean or average value of the random variable.
Whereas the binomial is a two-parameter (n and �) family of distributions,

the Poisson is a one-parameter (�) family. The Poisson distribution can be derived
as a limiting case of the binomial and is sometimes called the distribution of ‘rare
events’. Suppose we have a binomial distribution, but the number of trials n is indef-
initely large, while the probability � of a particular event at each trial approaches
zero; the resulting distribution, provided the average number of events expected
in n trials is a finite quantity, is the Poisson. The Poisson distribution also assumes
independent events, each with the same probability of occurring, but in addition
it assumes that the total number of such events could be (though with very small
probability) indefinitely large.

As an example, suppose it is known that in a large hospital two patients a
month, on an average, give incorrect billing information. What is the probability of
a month with no patient giving incorrect billing information in this hospital? Or that
there should be one patient with incorrect billing information in a given month? Or
two, or three? The Poisson distribution can be used to give good approximations to
answer these questions.

In this example, � = 2. Using the above formula, we can calculate

P(0) = 20e−2

0! = 0.1353,

P(1) = 21e−2

1! = 0.2706,

P(2) = 22e−2

2! = 0.2706,

P(3) = 23e−2

3! = 0.1804,
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and so on. Note that for the Poisson distribution the probability of zero events is in
general e−� and the probability of at least one event is 1 − e−�.

Poisson probabilities are good approximations to binomial probabilities when
n is large. Suppose, for example, that in the same hospital exactly 500 patients are
billed each month. Then it would be appropriate to use the binomial distribution
with n = 500 and � = 2/500, rather than the Poisson distribution. We would then
find, for no incorrect billings,

P(0) =
(

1 − 1
250

)500

=
(

249
250

)500

= 0.1348,

so we see that the Poisson approximation (0.1353) is good to three decimal places
in this instance. The Poisson distribution is appropriate when n is truly indefinitely
large and so we have no idea what it is. This would be the case when we are
measuring the number of radioactive counts in a unit of time, or when we are
counting the number of red cells that fall in a square on a hemocytometer grid. Two
examples of the Poisson distribution are shown in Figure 5.2. The first (�=0.6) was
shown to give a good approximation to the distribution of the number of soldiers
in the Prussian army killed by horse kicks in one year!

y

(A)

0
0.0

0.5

1 2 3 4 5
y

(B)

0 1 2 3 4 5

P (y )

0.0

0.5

P (y )

λ = 0.6 λ = 2

Figure 5.2 Examples of the Poisson distribution with parameter �.

UNIFORM DISTRIBUTION

The two families of distributions we have considered so far – the binomial and the
Poisson – are for discrete random variables. In each case we had a formula for
P(y), the probability that the random variable Y takes on the value y, and we could
plot these probabilities against y. A difficulty arises when we try to do this for a
continuous random variable.

Consider as a model a spinner connected to a wheel that has equally spaced
numbers ranging from 1 to 12 on its circumference, as on a clock (see Figure 5.3).
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Figure 5.3 Spinner wheel for a uniform distribution.

The point where the number 12 is on the circumference could equally well be
labeled 0, so that all the points on the circumference correspond to points on the
x-axis of Figure 5.4. If you spin the spinner (arrow), its tip is equally likely to stop
at any point in the interval from 0 to 12 or, for that matter, at any point between
any two consecutive numbers, say between 1 and 2. There are so many points on
this circle that the probability the tip stops at any specific point is virtually zero.
Yet it is easy to see that the probability that the tip stops between 1 and 2 is the
same as the probability it stops between 9 and 10 (and, in fact, this probability
is 1/12). We can plot the probability distribution corresponding to this model as in
Figure 5.4, in which the total area of the rectangle is unity: area = length of base
× height = 12 ×1/12 = 1. Moreover, the portion of the total area that lies between 1
and 2 is 1/12, and this is the probability that the tip of the spinner stops between 1
and 2. Similarly, the area between 3 and 7 is 4 ×1/12 =1/3, and this is the probability
the spinner stops between these two numbers. The height of the continuous line
(1/12) is called the probability density.

0 1 2 3 4 5 6 7 8 9 10 11 12

1/12

0

Probability
density

Number on face of spinner

Figure 5.4 The uniform probability density corresponding to the spinner model in
Figure 5.3.

The distribution described by the above model is called the uniform
(or rectangular) distribution. It is one of the simplest for continuous data. We can
let Y denote a random variable that can take on the values of the specific number
that the spinner tip stops on when it is spun. As a result, Y can take on any number
that is equal to or greater than 0 and less than or equal to 12, and there are infinitely
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many possibilities. Because the numbers are so many and so dense in the interval
from 0 to 12, the probability the spinner stops on a specific number is virtually 0.
However, there is a positive and calculable probability associated with any subin-
terval between 0 and 12, such as the subinterval between 1 and 2. The relevant
probability is simply the area of a rectangle, as explained in the previous paragraph.
For the distributions of many types of continuous random variables, formulas have
been developed that model the probability density and these formulas allow us to
calculate areas under curves that are identical to probabilities associated with spe-
cific subintervals of values of the random variable. The formula for the probability
density for the uniform distribution defined by our spinner model can be expressed
as follows:

f (y) = 1
12

, 0 ≤ y ≤ 12.

An arbitrary yet specific value (which we denote y) of the random variable Y
is the exact point between 0 and 12 at which the tip of the arrow comes to rest. The
probability density function f(y) gives the height of the line plotted at each value y
that Y can take on (in this case the height is always the same, 1/12, for all values of y
between 0 and 12). We cannot call the height the probability of y because, as we have
noted, the probability of any particular value of y – such as 2.5 or 7.68 – is essentially
zero. It is nevertheless a probability function, but we call it a probability density
function, or simply a density, to stress that its values are not actual probabilities. The
important thing to remember is that in the case of a continuous random variable, it
is the areas under the probability density function f(y) that represent probabilities.

NORMAL DISTRIBUTION

The most important family of continuous densities used in statistical applications
is the normal (or Gaussian) dsitribution. The latter name comes from the German
astronomer K.F. Gauss (1777–1855). The density has a bell-shaped appearance and
can also be shown to have a shape identical to that of a binomial distribution as n,
the number of trials, becomes indefinitely large while � remains constant. Look
again at the binomial distributions for � = ½ and n = 1, 2, 3, and 4 in Figure 5.1,
and then at the one in Figure 5.5(a) for � = ½ and n = 16. You will see that the
shape is approaching the curve in Figure 5.5(b), which is a normal density.

The normal probability density function is symmetric (and hence has a coef-
ficient of skewness equal to zero), with the highest point (the mode) at the center.
In Figure 5.5(b) the highest point occurs when y = 8, and this is the mean of the
distribution – denoted by �, the Greek letter mu. Although the normal density is
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Figure 5.5 (a) The binomial probability function when � =1 /2 and n = 16. (b) The
normal density function when � = 8 and � = 2.

always bell-shaped, it does not always have exactly the same amount of spread: it
may be tall and thin, or it may be short and fat. It always, however, has two points
of inflection, symmetrically placed about the mean. In Figure 5.5(b) these occur
at y = 6 and y = 10; they are points at which the curve changes from being con-
vex to concave, or from concave to convex. Starting at the extreme left, the curve
rises more and more steeply until it reaches y = 6, at which point, although still
rising, it does so more and more slowly. Similarly, at y = 10 the curve changes from
decreasing more and more steeply to decreasing less and less steeply. The distance
between the mean and the point of inflection (2 in Figure 5.5) measures the amount
of spread of a normal density and is denoted by �, the Greek letter sigma; it is the
standard deviation of the distribution. The family of normal densities is accordingly
a two-parameter family: The general formula for the curve is

f (y) = e− 1
2

( y−μ
σ

)2

σ
√

2π
, for − ∞ ≤ y ≤ ∞,

where � and e are the usual mathematical constants, y is the value of the random
variable, and �, � are the two parameters, respectively the mean and the standard
deviation of the distribution.

Recall that ∞ is the mathematical symbol for ‘infinity’; thus the curve goes
on ‘forever’ in both directions. The properties that we have discussed, as well as
those we shall discuss below, can all be deduced mathematically from this formula,
which describes a family of normal distributions. If � and � are known, say �=8 and
� =2 as in Figure 5.5(b), then the formula describes just one member of the family.
Other choices of � and � describe other members of the family. It is the value of
� that determines the location of the curve and the value of � that determines the
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amount of spread. Nevertheless, all members of the family are bell-shaped and are
described by the same general formula.

As with any other density, the total area under the normal curve is unity.
Because it is symmetric, the probability to the left of the mean is ½, as is the
probability to the right of the mean. The mean, median and mode are all located at
the center of the distribution and all have the same value �. The normal distribution
has two other properties that you should commit to memory:

1. The probability that a normally distributed random variable lies within one stand-
ard deviation of the mean, that is, between � − � and � + � (between 6 and
10 in Figure 5.5(b)), is about two-thirds, or, to be a little more precise, about
68%. It follows that there is a 16% probability it will lie below � − � and a 16%
probability it will lie above � + � (because 16 + 68 + 16 = 100).

2. The probability that a normally distributed random variable lies within two stand-
ard deviations of the mean, that is, between � − 2� and � + 2� (between 4
and 12 in Figure 5.5(b)), is about 95%. It follows that there is about a 2½%
probability it will lie below � − 2�, and the same probability it will lie above
� + 2�(2½ + 95 + 2½ = 100).

Theoretically, a normally distributed random variable can take on any value,
positive or negative. For the normal density pictured in Figure 5.5(b), for which
� = 8 and � = 2, it is theoretically possible (though highly improbable) that Y
could be less than –1000 or greater than 2000. The actual probability, however,
of being more than four or five standard deviations from the mean is virtually nil,
and for all practical purposes can be ignored. For this reason we can often use the
normal distribution to approximate real data, such as the heights of men, which
we know cannot possibly be negative. Of course, there is nothing abnormal about a
random variable not being normally distributed – remember that the word ‘normal’
in this context means only that the density follows the bell-shaped curve that is
mathematically defined above. But the normal distribution is of great practical
importance in statistics because many types of data are approximately normally
distributed or can be transformed to another scale (such as by taking logarithms or
square roots) on which they are approximately normally distributed. Furthermore,
even if the random variable of interest is not normally distributed and a normalizing
transformation cannot readily be found, sample averages of a random variable tend
to become normally distributed as the sample size increases. This important result
holds true even if the random variable is of the discrete type. This result plays a
fundamental role in many statistical analyses, because we often reduce our data
to averages in an effort to summarize our findings. We shall come back to this
important point later.
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CUMULATIVE DISTRIBUTION FUNCTIONS

So far, we have described various distributions by probability functions we have
denoted P(y) or f(y) – the former for discrete random variables (e.g. binomial,
Poisson) and the latter for continuous random variables (e.g. uniform, normal).
These same distributions can also be described by a different kind of function,
namely the cumulative probability distribution function, or simply the cumulative
distribution. Statisticians describe distributions both ways, and it is important to
know which is being used. In this book we shall always include the word ‘cumu-
lative,’ writing ‘cumulative probability distribution function’ or simply ‘cumulative
distribution’ when that is meant. It will be understood that if the word ‘cumulative’
is not stated, then a probability function is meant. (This is the usual convention in
the articles you are likely to read, but not the convention in mathematical articles.)

For every probability function there is exactly one corresponding cumulative
distribution function, and vice versa. Hence, each gives us exactly the same informa-
tion about the distribution of a random variable; they are two ways of expressing the
same information. They are different mathematical functions, however, and they
look quite different when we plot them. Whereas a probability function gives the
probability or density of a particular value y of Y (it is analogous to a histogram or
frequency polygon), the cumulative distribution function gives the probability that
Y is less than or equal to a particular value y (it is analogous to a cumulative plot).
The cumulative distribution function is particularly useful for continuous random
variables, for which we cannot talk of the ‘probability of y.’

The cumulative distribution functions for the uniform distribution illustrated
in Figure 5.4 and the normal distribution illustrated in Figure 5.5(b) are depicted
in Figure 5.6; they are denoted F(y).

First look at the cumulative uniform distribution in Figure 5.6(a). The probab-
ility that Y is less than or equal to 0 is 0, and we see that F(0)=0. The probability that
Y lies between 0 and 1 (i.e. is less than or equal to 1) is 1/12, and we see that F(1)= 1/12.
The probability Y is less than or equal to 6 is ½, and we see that F(6) = ½. Finally,
Y must be less than or equal to 12, and in fact we see that F(12) = 1. Although it
is not plotted in the figure, clearly F(−1) = 0 and F(13) = 1. For any cumulative
distribution it is always true that F(−∞) = 0 and F(∞) = 1.

Now look at the cumulative normal distribution shown in Figure 5.6(b). Note
that it has the shape of a sloping, elongated ‘S’, starting out close to zero and always
below unity, except at infinity. Note that F(�) = F(8) = 0.5; which corresponds to
stating that the mean is equal to the median. Other cumulative probabilities can
also be read off from this graph. Because there are an infinite number of possible
graphs corresponding to the infinite number of members in the family of normal
distributions, we would like a way to find probabilities for normal distributions
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Figure 5.6 Cumulative distribution functions: (a) Corresponding to the uniform density
function in Figure 5.4; (b) corresponding to the normal density function in Figure 5.5.

without having to construct a cumulative distribution plot whenever the need arises.
The next section provides a way of doing this.

THE STANDARD NORMAL (GAUSSIAN) DISTRIBUTION

Suppose a random variable Y is normally distributed in the population with mean μ

and standard deviation �. Let us subtract the mean from Y and divide the difference
by the standard deviation. Call the result Z, that is,

Z = Y − μ

σ
.

Then Z is also normally distributed, but has mean 0 and standard deviation 1. This
is pictured in Figure 5.7. The distribution of Z is called the standard normal distri-
bution. Any random variable that has mean 0 and standard deviation 1 is said to be
standardized. If we know the mean and standard deviation of a random variable, we
can always standardize that random variable so that it has a mean 0 and standard
deviation 1. (The symbol Z, or the term ‘Z-score’, is often used in the literature
to indicate a variable that has been standardized – sometimes in an unspecified
manner.) For a standardized normal random variable, about 68% of the population
lies between −1 and +1, and about 95% of the population lies between −2 and +2.
More accurate figures can be obtained from a table of the cumulative standard
normal distribution. For example, a table of the standard normal distribution indic-
ates that F(−1)= 0.1587 and F(1)= 0.8413, so that the probability that a standard
normal variable lies between – 1 and 1 is

F(1) − F(−1) = 0.8413 − 0.1587 = 0.6826.
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Figure 5.7 Normal density function of the random variable Y, with mean μ and
standard deviation σ , and of the standardized random variable Z, with mean 0 and

standard deviation 1.

Because the normal distribution is symmetric about its mean of 0, so that
F(0)=0.5, tables of the standard normal distribution often tabulate F(z) − F(0).
See, for example, the table for the normal distribution at the website
http://www.statsoft.com/textbook/stathome.html?sttable.html, where the entry for
1.0 is 0.3413. This tells us that F(1) is 0.5 + 0.3413 = 0.8413. Also, because of
the symmetry about the mean 0, we obtain F(−1) from this table by subtracting
from 0.5 the entry for 1.0, that is, F(−1) = 0.5 − 0.3413 = 0.1583. The net res-
ult is that F(1) − F(−1) is obtained from this table by doubling the entry for 1.0:
2 × 0.3413 = 0.6826. We can also see from the same table that the entry for 1.96 is
0.4750, so that

F(1.96) − F(−1.96) = 2 × 0.4750 = 0.95.

We see that 95% of a standard normal population lies between −1.96 and +1.96;
however, throughout this book we shall often say, as an approximation, that 95%
lies between −2 and +2.

We shall now see how a table of the standard normal distribution can be used to
find the percentiles of any normal distribution. Consider, for example, the normal
distribution illustrated in Figure 5.5(b), for which �=8 and � =2. What proportion
of the population lies below 12? To answer this question, we simply standardize the
12 and look the result up in the table. We set

z = 12 − μ

σ
= 12 − 8

2
= 2,
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and from the table we find F(2)= 0.5 + 0.4772 = 0.9772, or approximately 97.7%.
Following this approach, if we know the mean and standard deviation of a random
variable and we know that its distribution is a member of the family of normal dis-
tributions, we can always standardize the random variable and use a standard table
to make probability statements about it. We shall be using the cumulative standard
normal distribution for this purpose, as well as other cumulative distributions, in
later chapters.

SUMMARY

1. Traits are called variables for two main reasons: (a) measurement error causes the
values we observe to vary when measured repeatedly under the same conditions;
and (b) all biological systems are dynamic and hence vary inherently. A random
variable (response variable, variate) is just a variable observed as part of an
experiment, or a well-defined sampling process, so that it can be associated with
a probability distribution.

2. The distribution of a random variable is a description of the way the probability is
distributed among the possible values the random variable can take on. There are
two ways a distribution can be described: by a probability function (a probability
density function in the case of a continuous random variable), or by a cumulat-
ive probability distribution function. These each provide the same information
about a random variable, but in a different way. A probability function is a
rule that gives the probabilities (or densities) associated with different values
of the random variable. A cumulative distribution function gives cumulative
probabilities.

3. The binomial distribution is relevant for situations in which there are n obser-
vations of a dichotomous random variable, the n values arising independently of
one another and each observation having the same probability of falling into a
given category of the dichotomy; the total number of observations of one type is
then binomially distributed.

4. The Poisson distribution can often be used as a model for random variables such
as counts of rare events. It is a limiting case of the binomial distribution as the
number of observations n becomes indefinitely large.

5. The uniform distribution (density) has a rectangular shape and is characterized
by the fact that, within well-defined limits, the probability of observing a value
of the random variable in any interval is the same as that for any other interval
of the same length.
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6. The normal distribution (density) is bell-shaped and has a single peak or mode
located at its mean �. It is symmetric about its mean �, so its median is also equal
to �. The probability that a normally distributed random variable lies within one
standard deviation of the mean is 68%; within two standard deviations, 95%.

7. A cumulative distribution gives the probability that a random variable is less than
or equal to a particular value. The cumulative normal distribution has the shape
of a sloping, elongated ‘S’.

8. A standardized random variable has mean 0 and standard deviation 1. It is
obtained by subtracting from a random variable its mean and dividing the result
by its standard deviation. For the standard normal distribution, about 68% of
the population lies between −1 and +1 and 95% between −2 and +2.

FURTHER READING

Rohatgi, V.K., and Saleh, A.K.Md.E. (2001) An Introduction to Probability and Statistics,
2nd edn. New York: Wiley. (This book provides a mathematical description of many
of the distributions likely to be encountered in a variety of applied problems. It gives
many examples and is a good starting place for the reader who would like to know more
about the mathematical aspects of these distributions.)

Wackerly, D.D., Mendenhall, W., and Scheaffer, R.L. (2002) Mathematical Statistics with
Applications, 6th edn. Pacific Grove, CA: Duxbury. (Chapters 3, 4, 5 and 7 of this book
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PROBLEMS

1. A variable (often denoted by a capital letter such asY ) that is observed as
part of an experiment or a well-defined sampling process is called a

A. binomial variable
B. standardized variable
C. random variable
D. normalized variable
E. uniform variable

2. A physician sent a sample of a patient’s blood to a lipid laboratory for
cholesterol and triglyceride determinations. The triglyceride determina-
tion was well within the normal range, but the cholesterol reading was
280 mg/dl. Being unconvinced that the patient had elevated cholesterol,
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the physician sent a second sample to the laboratory and the read-
ing was 220. The disagreement between the two readings could be
an example of

A. the Poisson distribution and biological variability
B. the binomial distribution and observer error
C. the cumulative distribution and biological variability
D. the random variable and the binomial distribution
E. observer error and biological variability

3. If we conduct n trials, the outcome of each of which is either a success
(with probability p) or failure (with probability 1 − p), the distribution of r ,
the total number of successes, is written

P(r ) = n!
(n − r )!r !p

r (1 − p)n−r .

This is known as

A. the binomial distribution with parameters r and p
B. the binomial distribution with parameters n and p
C. the binomial distribution with parameters n and r
D. the binomial distribution with probability p
E. the binomial distribution with the mean np

4. If there is a 2% chance that a child will be born with a congenital anomaly,
what is the probability that no congenital anomaly will be found among
four random births?

A. 0.92
B. 0.8
C. 0.2
D. 0.02
E. 0.08

5. A couple is at risk of having children with a recessive disease, there being
a probability of 0.25 that each child is affected. What is the probability, if
they have three children, that at least one will be affected?

A. 0.75
B. 0.02
C. 0.58
D. 0.42
E. 0.25
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6. A random variable, which we denote Y, is known to have a uniform
distribution with probability density as follows:

f (y ) = 1
10

, 0 ≤ y ≤ 10.

The probability an observed value of the random variable is between 4
and 6 is

A. 1/10

B. 2/10

C. 4/10

D. 8/10

E. 1

7. To determine whether mutations occur independently and with equal
probability, a researcher sets up an experiment in which the number of
mutant bacteria that appear in a certain volume of cell suspension can
be counted as the number of colonies on an agar plate. One hundred
cell suspensions are plated, and on each of the 100 plates the number of
mutant colonies ranges from 0 to 9. In view of the purpose of the study,
the distribution of these numbers should be compared to a

A. binomial distribution
B. Poisson distribution
C. uniform distribution
D. normal distribution
E. none of the above

8. All the following are characteristics of the family of normal distributions
except

A. positively skewed
B. mean equal to median
C. median equal to mode
D. mean equal to mode
E. symmetric

9. The normal distribution has two points of inflection. If the total area is
100%, what is the area under the normal curve between the two points
of inflection?

A. 99%
B. 95%
C. 90%
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D. 68%
E. 50%

10. A normal distribution has mean 15 and standard deviation 3.What interval
includes about 95% of the probability?

A. 12–18
B. 9–21
C. 6–24
D. 3–27
E. none of the above

11. Weight is approximately normally distributed with mean 150 Ib and stand-
ard deviation 10 lb.Which of the following intervals includes approximately
two thirds of all weights?

A. 145–155 lb
B. 140–160 Ib
C. 130–170 Ib
D. 130–150 Ib
E. 150–170 Ib

12. A random variable, which we denote Y, is known to be normally distrib-
uted with mean 100 and standard deviation 10. The probability that an
observed value of this random variable is less than 90 or greater than 110
is approximately

A. 0.15
B. 0.32
C. 0.68
D. 0.84
E. 0.95

13. A random variable, which we denoteY, is known to be normally distributed
and to have mean 50 and standard deviation 5.What is the probability that
the value of Y lies between 44 and 56?

A. 0.95
B. 0.16
C. 0.05
D. 0.87
E. 0.68

14. A random variable, which we denote Z, is known to have mean 0 and
standard deviation 1. The random variable Y = 10 + 2Z therefore has



RANDOM VARIABLES AND DISTRIBUTIONS 127

A. mean 0, standard deviation 2
B. mean 10, standard deviation 0
C. mean 0, standard deviation 4
D. mean 10, standard deviation 2
E. mean 2, standard deviation 10

15. A cumulative distribution

A. expresses the same information as a probability or density function,
but in a different way

B. states the probability that a random variable is less than or equal to a
particular value

C. always takes on a value between zero and one
D. all of the above
E. none of the above





CHAPTER SIX

Key Concepts

estimate, estimator
standard error (of the mean)
unbiased, biased
minimum variance unbiased estimator,

efficient estimator, robust estimator

maximum likelihood estimate
normal range, confidence limits or

confidence interval
(Student’s) t -distribution, degrees of

freedom
pooled variance





Estimates and Confidence
Limits

SYMBOLS AND ABBREVIATIONS
d.f. degrees of freedom
s sample standard deviation (estimate)
S sample standard deviation (estimator)
s2 sample variance (estimate)
S2 sample variance (estimator)
s.e.m. standard error of the mean
t percentile of Student’s t-distribution or corresponding test statistic
x, y particular values of (random) variables
X, Y random variables
y sample mean of y (estimate)
Y sample mean of Y (estimator)
z particular value of a standardized normal random variable
Z standardized normal random variable
� population proportion
� population mean
� population standard deviation
�2 population variance

ESTIMATES AND ESTIMATORS

It will be helpful at this point to distinguish between an estimate and an estimator.
An estimator is a rule that tells us how to determine from any sample a numerical
value to estimate a certain population parameter, whereas an estimate is the actual
numerical value obtained from a particular sample. Suppose we select a random
sample of 10 students from a class of 200, measure their heights, and find the sample
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mean. If we consider the ‘sample mean’ to be the rule that tells us to add up the 10
heights and divide by 10, it is an estimator, and we shall denote it Y. If, on the other
hand, we consider the ‘sample mean’ to be the result we obtain from a particular
sample – say, 70 inches – it is an estimate and we shall denote it y. The estimator
Y is a random variable that takes on different values from sample to sample. The
estimate y, on the other hand, is the numerical value obtained from one particular
sample. We say that the sample mean Y is an estimator, and y an estimate, of the
population mean �. Thus, particular values of an estimator are estimates. Different
samples might yield y = 69 inches or y = 72 inches as estimates of the mean of the
entire class of 200 students, but the estimator Y is always the same: add up the 10
heights and divide by 10.

Note that we have retained our convention of using capital, or uppercase,
letters to denote random variables (estimators) and lowercase letters to denote
specific values of random variables (estimates). The word ‘estimate’ is often used in
both senses, and there is no harm in this provided you understand the difference.
To help you appreciate the difference, however, we shall be careful to use the two
different words and symbols, as appropriate.

Because our set of study units is not expected to be exactly the same from
sample to sample, an estimator, which gives us the rule for calculating an estim-
ate from a sample, is itself a random variable – the estimates vary from sample to
sample. As a result, an estimator has a distribution and it is of interest to determine
its variance and standard deviation (and also the shape and other general char-
acteristics of its distribution). By selecting many different samples and obtaining
the corresponding estimate for each sample, we obtain a set of data (estimates)
from which we can compute a variance and standard deviation in the usual way.
The problem with this approach is that it requires that many samples be stud-
ied and is therefore not practical. Fortunately, there is a way of estimating the
variance and standard deviation of an estimator from the information available in
a single sample. If the population variance of a random variable is �2, it can be
proved mathematically that the sample mean Y 3 of n independent observations
has variance equal to �2/n and standard deviation equal to �/

√
n. We can estim-

ate these quantities by substituting s for �, where s is computed from a single
sample in the usual way. We see immediately from the formula �2/n that the lar-
ger the sample size (n), the smaller are the variance and standard deviation of
the sample mean. In other words, the sample mean calculated from large samples
varies less, from sample to sample, than the sample mean calculated from small
samples.

It is usual practice to call the standard deviation of an estimator the standard
error (often abbreviated s.e.) of that estimator. The standard deviation of the sample
mean (�/

√
n) is, therefore, often called the standard error of the mean. When

applied to the sample mean, there is no real difference between the terms ‘standard
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deviation’ and ‘standard error’, but the latter is often used when we are referring
to variability due to error, as opposed to natural variability. The fact that men have
variable heights is in no way due to ‘error’, but the fact that our estimate of mean
height differs from sample to sample and almost all the specific estimates differ from
the true mean can be considered error – sampling error. Furthermore, from now
on in this book, as in so much of the literature, we shall use the term ‘standard error’
to indicate the estimated standard deviation of the estimator. Thus, the standard
error of the mean (often abbreviated s.e.m.) is s/

√
n.

NOTATION FOR POPULATION PARAMETERS, SAMPLE
ESTIMATES, AND SAMPLE ESTIMATORS

We have already indicated that we denote population parameters by Greek letters
and sample statistics by Latin letters. The former are always fixed constants, whereas
the latter, in the context of repeated sampling, can be considered random variables.
The particular estimates calculated from one sample (such as 69 inches or 72 inches
in the above example) are fixed constant quantities, but they can be viewed as
particular outcomes of random variables in the context of examining many, many
samples. Depending on how they are viewed, we use lowercase or uppercase Latin
letters. Assuming a sample of size n, our fundamental notation is as follows:

Name Parameter Estimate Estimator

Mean � y Y
Variance �2, σ 2

Y s2, s2
Y S2, S2

Y

Standard deviation �, �Y s, sY S, SY

Standard deviation of the mean σy = σY/
√

n sY = sY/
√

n SY = SY/
√

n

Thus � is the population mean (parameter), y the sample mean (estimate).
Similarly, � is the population standard deviation, s the sample standard deviation;
in other words, � is the standard deviation of a random variable Y, and s is the
estimate of � we calculate from a sample. When we want to stress the fact that
the relevant random variable is Y, we write �Y or sY – the standard deviation of Y.
Analogously, σY is the standard deviation of Y, the standard deviation of the sample
mean of n observations, while sy is the sample estimate of this quantity, which, as
noted earlier, is often called the standard error of the mean. Thus σY = σY/

√
n and

sY = sY/
√

n.
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PROPERTIES OF ESTIMATORS

We usually estimate the population mean by the sample mean; and we often estimate
the population variance by the sample variance. Why do we do this? There are
obviously many possible estimators to choose from so why not, for example, estimate
the population mean by the average of the smallest and largest values in our sample?
The answer is that we choose estimators, and hence estimates, that have certain
‘good’ properties. As discussed earlier, an estimator is a random variable and has
a distribution. The characteristics of this distribution determine the goodness of
the estimator. In the previous example, suppose we take all possible samples of 10
students from the class of 200 and compute the mean height from each sample.
These sample means vary in the sense that they have different values from sample
to sample, and if we average them, we obtain a ‘mean of means’, which is equal to
the population mean – the mean height of all 200 students. In a case such as this,
in which the average of the sample estimates for all possible samples equals the
value of the parameter being estimated, we say the estimator is unbiased: the mean
of the estimator’s distribution is equal to the parameter being estimated. When
this does not occur, the estimator is biased. In general, when we have a random
sample, the sample mean is an unbiased estimator of the population mean and
the sample variance is an unbiased estimator of the population variance; but the
sample standard deviation is not an unbiased estimator of the population standard
deviation.

Recall that we use n − 1 rather than n as a divisor when we average the sum
of squared deviations from the sample mean in computing the sample variance. If
we used n as a divisor, we would find that the average of all possible estimates is
equal to (n − 1)/n times the population variance and it follows that the estimator
that uses n as a divisor is biased; such an estimator leads to an estimate that is, on
an average, smaller than the population value. With n − 1 as a divisor, we have an
unbiased estimator of the variance.

We should like our estimate to be close to the parameter being estimated as
often as possible. It is not very helpful for an estimate to be correct ‘on average’
if it fluctuates widely from sample to sample. Thus, for an estimator to be good,
its distribution should be concentrated fairly closely about the true value of the
parameter of interest; in other words, if an estimator is unbiased the variance of
the estimator’s distribution should be small. If we have a choice among several
estimators that are competing, so to speak, for the job of estimating a parameter,
we might proceed by eliminating any that are biased and then, from among those
that are unbiased, choose the one with the smallest variance. Such an estimator is
called a minimum variance unbiased estimator, or an efficient estimator. It can be
shown mathematically that if the underlying population is normally distributed, the
sample mean and the sample variance are minimum variance unbiased estimators of
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the population mean and the population variance, respectively. In other situations,
however, the sample descriptive statistic may not have this property. The sample
mean is a minimum variance unbiased estimator of the population mean when
the underlying population is binomially or Poisson-distributed, but in these two
cases an analogous statement cannot be made about the sample variance. In fact,
the efficient estimator of the variance of a Poisson distribution is provided by the
sample mean!

We have discussed only two important properties of good estimators. Other
properties are also of interest, but the important thing is to realize that criteria
exist for evaluating estimators. One estimator may be preferred in one situation
and a second, competing estimator may be preferred in another situation. There is
a tendency to use estimators whose good properties depend on the data following
a normal distribution, even though the data are not normally distributed. This is
unfortunate because more appropriate methods of analysis are available. You cannot
hope to learn all of the considerations that must be made in choosing estimators
that are appropriate for each situation that might arise, but you should be aware of
the necessity of examining such issues.

An estimator that usually has good properties, whatever the situation, is called
robust. It is to our advantage if we can find estimators that are robust. The sample
mean is a robust estimator of the population mean.

MAXIMUM LIKELIHOOD

Having accepted the fact that estimators should have certain desirable properties,
how do we find an estimator with such properties in the first place? Again there are
many ways of doing this, and no single approach is preferable in every situation.
A full discussion of these methods requires mathematical details that are beyond the
scope of this book, but we must describe two very important approaches to deriving
estimators because they are frequently mentioned in the literature. One is based
on a method known as maximum likelihood estimation, and the other on a method
called least-squares estimation. The method of least squares will be discussed in
Chapter 10. Maximum likelihood estimates of parameters such as the population
mean and variance are those values of the parameters that make the probability of,
or likelihood for, our sample as large as possible – a maximum. Intuitively, they are
those parameter values that make the data we observe ‘most likely’ to occur in the
sample.

A simple example will illustrate the principle. Suppose we wish to estimate
the proportion of a population that is male. We take a random sample of n persons
from the population and observe in the sample y males and n − y females. Suppose
now that the true population proportion is �, so that each person in the sample has
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a probability � of being male. What then is the probability of, or likelihood for, our
sample which contains y males and n−y females? We learned in Chapter 5 that the
probability of this happening is given by the binomial distribution with parameters
n and �, that is,

P(y males) = n!
y!(n − y)!π

y(1 − �)n−y.

Fixing y, which is known once the sample has been taken, and considering � to be a
variable, we now ask: What value of � makes this probability a maximum? We shall
call that value the maximum likelihood estimate of �. We shall not prove it here,
but it can be shown that in this case the likelihood is largest when we set � equal
to y/n, the sample proportion of male persons. (It is instructive to take the time
to verify this numerically. Suppose, for example, that n = 5 and y = 2. Calculate
P(y male) for various values of � (e.g. � = 0.2, 0.3, 0.4, 0.5). You will find that it is
largest when � = 0.4.) Thus, the maximum likelihood estimate of � in this example
is y/n. Analogously, the maximum likelihood estimator of � is Y/n, where Y is the
random variable denoting the number of male persons we find in samples of size n
from the population.

Except as noted in the Appendix, maximum likelihood estimators have the
following important properties for samples comprising a very large number of study
units; that is, as the number of study units tends to infinity, maximum likelihood
estimators have the following (so-called asymptotic) properties:

1. They are unbiased: the mean of the estimator (i.e. the mean of many, many
estimates) will equal (or at least be arbitrarily close to – very, very close to) the
true value of the parameter being estimated.

2. They are efficient: the variance of the estimator (i.e. the variance of many, many
estimates) is the smallest possible for any asymptotically unbiased estimator.

3. The estimators are normally distributed. The utility of this last property will
become apparent later in this chapter.

In certain instances, maximum likelihood estimators have some of these prop-
erties for all sample sizes n; in general, however, they have these properties only
for very large sample sizes. How large n must be for these properties to be enjoyed,
at least approximately, depends on the particular situation, and is often unknown.
Other problems can occur with maximum likelihood estimators: we must know the
mathematical formula for the distribution, they may be difficult to compute, they
may not exist and, if they do exist, they may not be unique. Nevertheless, the prin-
ciple of maximum likelihood estimation has a great deal of intuitive appeal and it is
widely used.
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ESTIMATING INTERVALS

In the literature, estimates are often given in the form of a number plus or minus
another number. For example, the mean serum cholesterol level for a group of 100
persons might be reported as 186 ± 32 mg/dl. Unfortunately, these numbers are
often reported without any explanation of what the investigator is attempting to
estimate. It is a standard convention for the first number (186) to be the parameter
estimate, but there is no standard convention regarding what the number after
the ± sign represents. In some instances, the second number is a simple multiple
(usually 1 or 2) of the estimated standard deviation of the random variable of interest.
In other instances, it may be some multiple of the standard error of the estimator.
In our example, 186±32 mg/dl represents the mean serum cholesterol level plus
or minus one standard deviation, estimated from a group of 100 persons. If we
divide 32 mg/dl by the square root of the sample size (i.e. by 10), we obtain the
standard error of the mean, equal to 3.2 mg/dl. Thus the interval 186 ± 3.2 mg/dl
represents the mean serum cholesterol level plus or minus one standard error of the
mean. Clearly it is important to know which is being quoted, and to know whether
the number after the ± sign is once, twice or some other multiple of the estimated
standard deviation or standard error of the mean. We now turn to a discussion of
how the different intervals should be interpreted.

We shall see later in this chapter that the standard error of the mean is used
to define an interval that we believe contains the true value of the mean. For now,
suppose that we wish to estimate an interval that includes most of the population
values. Suppose that our population of cholesterol values is normally distributed,
with mean � and standard deviation �. Then we know that approximately two thirds
of the population lies between � − � and � + � – that is, in the interval � ± �. We
can estimate this interval by y ± s (i.e., 186 ± 32 mg/dl). Thus, provided cholesterol
levels are normally distributed and our sample size is large enough for the estimates
to be close to the true parameters, we can expect about two thirds of the population
to have cholesterol levels between 154 and 218 mg/dl. Similarly, we know that about
95% of the population lies in the interval �±2�, which for our example is estimated
by 186 ± 64. Thus, we might estimate that 95% of the population cholesterol levels
are between 122 and 250 mg/dl.

Such intervals, or limits, are often quoted in the literature in an attempt to
define a normal range for some quantity. They must, however, be very cautiously
interpreted on two counts. First, the assumption of normality is not a trivial one.
Suppose it was quoted, on the basis of the data in Table 3.1, that y ± 2s for trigly-
ceride levels in male students is 111 ± 118 mg/dl (y = 111, s = 59). Should we
expect 95% of the population to be in this interval? Note that this interval is from
−7 to 229 mg/dl. Triglyceride levels are not at all normally distributed, but follow
a very positively skewed distribution in the population (see Figures 3.2 and 3.4);
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this explains why y − 2s is negative and hence an impossible quantity. We must
not assume that � ± 2� includes about 95% of the population for a non-normally
distributed random variable. Second, there is an implicit assumption (in addition
to normality) that the sample estimates are close to the true parameter values. It
is rarely realized that it takes very large sample sizes for this assumption to be
adequately met. If the sample size is less than 50, then y ± 2s includes, on an aver-
age, less than 95% of a normally distributed population. When the sample size is
10, it includes on an average only 92%, and when the sample size is down to 8,
it includes on an average less than 90%. Although these consequences might be
considered small enough to neglect, it must be realized that these percentages are
only averages. The results from any one sample could well include less than 75% of
the population, as can be seen from Table 6.1. We see from this table, for example,
that when the sample size is 10, there is a 0.12 probability that y ± 2s includes less
than 75% of the population. Even when the sample size is 100, there is still a 0.06
probability that y ± 2s includes less than 75% of the population. Thus, if choles-
terol levels are normally distributed, the interval 122 to 250 mg/dl has a small but
non-negligible probability (0.06) of including less than 75% of the population.

Table 6.1 Approximate proportion of samples from a
normal distribution in which the estimated mean ±2s.d. will

fail to include the indicated percentage of the population

Percentage of the Population

Sample Size 75 90 95

10 0.12 0.18 0.24
20 0.09 0.12 0.15
30 0.08 0.10 0.12
40 0.07 0.09 0.11
50 0.07 0.09 0.11

100 0.06 0.07 0.08

DISTRIBUTION OF THE SAMPLE MEAN

We have seen that if Y is normally distributed, we can write, approximately,

P(� − 2� ≤ Y ≤ � + 2�) = 0.95

and

P
(

−2 ≤ Y − μ

σ
≤ 2

)
= 0.95.
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The 97.5th percentile of the standard normal distribution is about 2, and the 2.5th
percentile is about −2. Now consider Y, the mean of n such normally distributed
random variables. We have already learned that Y has mean � and standard deviation
�/

√
n. Furthermore, it is normally distributed. As an example, suppose we have a

population in which the mean height is 67 inches and the standard deviation is 3
inches. We take samples of four persons each and average their heights. Then the
distribution of these averages is normal with mean 67 inches and standard deviation
3/

√
4 inches=1.5 inches. This is pictured in Figure 6.1. Notice that whereas about

95% of the population lies in the interval 61 to 73 inches, about 95% of the means
lie in the interval 64 to 70 inches.

61 67 73

Distribution of Y

64 67 70

Distribution of Y

Figure 6.1 Normal density function of a person’s height, Y, with mean 67 inches and
standard deviation 3 inches, and of the average of a sample of four persons’ heights, Y,

with the same mean 67 inches but standard deviation 1.5 inches.

Now let us subtract the mean from Y and divide the difference by its standard
deviation, that is,

Z = Y − μ

σY
.

We denote the result Z, because that is the letter usually used for a standardized
normal random variable; with about 95% probability it lies between −2 and +2.
Consequently, we can write

P(−2 ≤ Z ≤ 2) = 0.95
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or

P

(
−2 ≤ Y − μ

σY
≤ 2

)
= 0.95,

which is equivalent to

P
(
Y − 2σY ≤ μ ≤ Y + 2σY

) = 0.95.

(The derivation of this equivalence is given in the Appendix.) Remember,
σY = σY/

√
n for a sample of size n.

Let us now summarize the various facts we have learned about the sample
mean Y:

1. The mean of Y is �.
2. The variance of Y is σ 2/n (i.e. σ 2

Y
= σ 2

Y/n).
3. The standard deviation of Y is σ/

√
n (i.e. σY = σY/

√
n).

4. Y is normally distributed. This is strictly true only if Y is normally distributed. It
is a remarkable fact, however, that it also tends to be true, for moderate to very
large sample sizes, almost irrespective of how Y is distributed (the word ‘almost’ is
added to allow for some special situations that, although mathematically possible,
do not usually occur in practice). Usually, a mean of five or more observations is
for all intents and purposes normally distributed.

5. It therefore follows, provided Y is based on five or more observations, that

P
(

Y − 2σy√
n

≤ μ ≤ Y + 2σy√
n

)
= 0.95.

CONFIDENCE LIMITS

Consider once more the triglyceride levels in Table 3.1, for which y = 111 mg/dl,
s = 59 mg/dl, and n = 30. The standard error of the mean is 59/

√
30 = 11 mg/dl.

Let us assume for the moment that the true population values are �Y = 59 and
σY =11 mg/dl. (We shall see how to avoid this assumption later.) The interval y±2σY

is 111 ± 22, or 89 to 133 mg/dl. Can we therefore say that there is about a 95%
probability that � lies in this interval? In other words, can we write

P (89 ≤ μ ≤ 133) = 0.95?

Regardless of how good the approximation might be, with the definitions we have
given such an expression is impossible. The true mean � is a fixed quantity, not a
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random variable, and the fact that we do not know it does not alter this. Similarly,
89 and 133 are fixed quantities. Either � lies between 89 and 133 mg/dl, or it does
not. We cannot talk about the ‘probability’ of this being the case, since probability
is a property associated with random variables. Thus, it is meaningful to write

P(Y − 2σY ≤ μ ≤ Y + 2σY) = 0.95

but not to write

P(y − 2σY ≤ μ ≤ y + 2σY) = 0.95.

Now you can see why we have taken pains to distinguish between Y and y. The
former is a random variable, about which we can make a probability statement; the
latter is a fixed quantity, about which we cannot make a probability statement.

Despite the fact that we cannot talk about the probability of � lying between
89 and 133 mg/dl, this interval is clearly somehow related to the unknown mean
�, and we should be reasonably certain (perhaps ‘95% certain’) that � is in fact
between 89 and 133 mg/dl. We call these numbers the 95% confidence limits, or
confidence interval, for �, and we say that � lies between 89 and 133 mg/dl with
95% confidence.

Thus y ± 2σY (i.e. y ± 2σY/
√

n) gives an approximate 95% confidence interval
for the mean. This is strictly true only if Y is normally distributed, but tends to
be true, for samples that are at least moderately large, whatever the distribution
of Y. A confidence interval is to be interpreted as follows: if we were to find many
such intervals, each from a different sample but in exactly the same fashion, then,
although the intervals may be different and bounce around randomly, in the long
run about 95% of our intervals in fact would include the true mean and 5% would
not. We cannot say that there is a 95% probability that the true mean lies between
the two values we obtain from a particular sample, but we can say that we have 95%
confidence that it does so. We know that if we estimate � by the mean y of a single
sample, we cannot expect to be so lucky as to have y = μ. With a single number
as our estimate, we have no feel for how far off we might be with our estimate. By
using a confidence interval to estimate �, we have a range of values that we think,
with some degree of confidence, contains the true value �. We shall now briefly
indicate how confidence limits are calculated in several specific situations.

CONFIDENCE LIMITS FOR A PROPORTION

Suppose we wish to estimate the probability a newborn is male. We take a random
sample of 1000 births and find 526 are male. We therefore estimate the proportion
of births that are male as being 0.526. What would the 95% confidence limits be?
Since 0.526 is a maximum likelihood estimate based on a large sample, it can be
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considered as the outcome of a normally distributed random variable. Now if Y
follows a binomial distribution with parameters n and �, then it can be shown that
the variance of Y/n (y/n is 526/1000 in our particular sample) is �(1 − �)/n. Thus
Y/n is approximately normally distributed with mean � and standard deviation√

�(1 − �)/n, and so an approximate 95% confidence interval for � is

y
n

± 2

√
π(1 − �)

n

which we estimate by

0.526 ± 2

√
0.526(1 − 0.526)

1000
= 0.526 ± 0.032.

Thus, we have about 95% confidence that the true proportion lies between 0.494
and 0.558.

Notice that to calculate this interval we substituted our estimate, 0.526, for
�. For a large sample this is adequate. Had the sample been small, we should not
assume Y/n is normally distributed, and it would have been necessary to use spe-
cial tables that have been calculated from the binomial distribution. As a rule of
thumb, the approximation is adequate provided both n� and n(1 − �) are greater
than 5. Note also that because the estimator is approximately normally distributed,
in large samples a 95% confidence interval can always be obtained from a max-
imum likelihood estimate by adding and subtracting twice the standard error of the
estimator.

CONFIDENCE LIMITS FOR A MEAN

Consider our example in which we determined 95% confidence limits for mean
triglyceride level as being 89 to 133 mg/dl. Recall that we assumed we knew �Y =59
and σY = 11 mg/dl, whereas in fact these were really the sample estimates sY and
sY, respectively. Usually we do not know the true standard deviation, �Y, so to be of
any practical use we must be able to calculate confidence limits without it. Does it
make any difference if we simply substitute sY for σY? The answer is that it does not,
for all practical purposes, if the sample size is more than 30. When the sample size
is smaller than this, we must allow for the fact that we do not know σY, as follows.

We have seen that if Y is normally distributed, then (Y −μ)/σY follows a stand-
ard normal distribution, for which the approximate 2.5th and 97.5th percentiles are,
respectively, −2 and +2. Analogously, substituting SY for σY, (Y − μ)/SY follows
a distribution called Student’s t-distribution with n − 1 degrees of freedom. We
mentioned earlier that we may be interested in knowing characteristics of specific
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distributions other than just the mean and variance of the relevant random vari-
able. Knowing the shape of Student’s t-distribution is one such example. Like the
standard normal distribution, the t-distribution is symmetric about zero, so that the
2.5th percentile is simply the negative of the 97.5th percentile. Denote the 97.5th
percentile t97.5. Then the 95% confidence limits are y ± t97.5sY.

The distribution of (Y − μ)/SY was derived by a mathematician who worked
for the Guinness Brewing Company in Ireland and who published his statistical
papers under the pseudonym ‘Student’. This quantity is denoted t, hence the name
‘(Student’s) t-distribution.’ Just as the normal distribution is a family of distributions,
a particular one being determined by the parameters � and �, so is the t-distribution
a family of distributions – but in this case the particular distribution is determined
by a parameter known as the ‘number of degrees of freedom’, a concept we shall
explain shortly. Each t-distribution is similar to the standard normal distribution
but has thicker tails, as illustrated in Figure 6.2. The fewer the degrees of freedom,
the thicker the tails are. As the number of degrees of freedom becomes indefinitely
large (in which case � = s), the t-distribution becomes the same as the standard
normal distribution. This can be seen in the following 97.5th percentiles, abstracted
from a table of the t-distribution:

1 degree of freedom : 12.706
10 : : : : : 2.228
30 : : : : : 2.042

(standard normal)∞ : : : : : 1.960

Now you can see the basis for saying that for all practical purposes it makes no
difference if we substitute sY for σY when the sample size is more than 30: 2
is almost as close an approximation to 2.042 (t97.5 when there are 30 degrees of
freedom, corresponding to n = 31) as it is to 1.960 (the 97.5th percentile of the
standard normal distribution).

Standard Normal
Distribution

Student's t –
Distribution

–2 0 2–1 1

Figure 6.2 Example of the density function of Student’s t-distribution compared to that
of the standard normal distribution.
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Now let us go back once more to our example of triglyceride levels (from the
data in Table 3.1), for which y = 111 mg/dl, sY = 59 mg/dl, and n = 30. Calculat-
ing with more accuracy than previously, we find sY = 59/

√
30 = 10.77 mg/dl, and

from a table of the t-distribution we find that, for n − 1 = 29 degrees of freedom,
t97.5 = 2.045. From this we find that y ± t97.5sY is 111 ± 2.045 × 10.77 = 111 +
22.0 mg/dl. Clearly in this case our earlier approximation was adequate. Had the
sample size been much smaller (e.g. 10 or less), however, the approximation y±2sY

would have led to an interval that is much too short.

THE CONCEPT OF DEGREES OF FREEDOM

The term degrees of freedom, abbreviated d.f., will occur again and again, not only
in connection with the t-distribution, but also in many other problems. Basically,
the degrees of freedom refer to the number of ‘independent’ observations in a
quantity. We give the following simple examples to illustrate the degrees of freedom
concept. You know that the sum of the angles in a triangle is equal to 180◦. Suppose
you were asked to choose the three angles of a triangle. You have only two degrees
of freedom in the sense that you may choose two of the angles, but then the other
is automatically determined because of the restriction that the sum of the three is
180◦. Suppose you are asked to choose three numbers with no restrictions on them.
You have complete freedom of choice in specifying all three numbers and hence,
in that case, you have three degrees of freedom.

Now suppose you are asked to choose six numbers (which we shall call y1, y2,
y3, y4, y5, and y6) such that the sum of the first two is 16 and also such that the
sum of all of them is 40. There are six numbers to be specified, but you do not have
freedom of choice for all six. You have to take into account the restrictions

y1 + y2 = 16

and

y1 + y2 + y3 + y4 + y5 + y6 = 40.

As soon as you select y1, then y2 = 16 − y1, and so y2 is completely determined. Of
the remaining numbers, y3 + y4 + y5 + y6 = 40 − 16 = 24. Thus, only three of the
numbers y3, y4, y5, y6 can be freely chosen. If we choose y3, y4, and y5, for example,
y6 is predetermined as follows:

y6 = 24 − (y3 + y4 + y5)

Hence, the total number of degrees of freedom in this example is 1 + 3 = 4.
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In computing a variance, we use as the divisor a number that makes the variance
an unbiased estimator of the population variance. This divisor is the number of
degrees of freedom associated with the estimator once an estimate of the mean
has been made. Recall that our divisor for the variance is the size of the sample
minus one (i.e. n − 1). Once the mean is fixed at its sample value, there are only
n−1 degrees of freedom associated with permissible values of the numbers used to
compute the variance. This same number is also the number of degrees of freedom
associated with the estimated standard deviation, and with the t-distribution used
to obtain confidence limits for the mean from the formula y ± tsY.

Other types of problems with a variety of restrictions and degrees of freedom
are considered in subsequent chapters of this book. In every instance the number
of degrees of freedom is associated with a particular statistic (such as sY). It is
also the appropriate value to use as the parameter of a distribution (such as the
t-distribution) when using that statistic for a particular purpose (such as calculating
confidence limits).

CONFIDENCE LIMITS FOR THE DIFFERENCE BETWEEN TWO MEANS

Suppose we compare two drugs, A and B, each aimed at lowering serum cholesterol
levels. Drug A is administered to one group of patients (sample 1) and drug B to
a second group (sample 2), with the patients randomly assigned to the two groups
so that the samples are independent. If we use the estimators Y1 and Y2 to find
estimates y1 and y2 of the post-treatment serum cholesterol means for drug A and
drug B, respectively, we might want to construct a confidence interval for the true
difference �1 − �2. In this situation a 95% confidence interval would be given by

y1 − y2 ± t97.5 sY1−Y2
,

where t97.5 is the 97.5th percentile of the t-distribution, with degrees of freedom
equal to that associated with sY1−Y2

, the standard error of Y1 −Y2. If the two samples
have the same true variance �2, then the respective sample variances s2

1 and s2
2 are

both estimates of the same quantity �2. In such instances we can average or ‘pool’
the sample variances to obtain a pooled estimate s2

p of �2:

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
.

Note that when we pool s2
1 and s2

2, we weight each by the number of degrees of
freedom associated with it. Note also that we obtain a (weighted) average of sample
variances, not of standard deviations. We take the square root of this pooled variance
to obtain the (sample) pooled standard deviation sp. Next, you need to know that
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when we have two independent random variables, the variance of their difference
is equal to the sum of their variances. Thus the variance of Y1 − Y2 is the variance
of Y1 plus the variance of Y2, that is,

σ 2
Y1−Y2

= σ 2

n1
+ σ 2

n2
= σ 2

(
1
n1

+ 1
n2

)
,

and it follows that the standard deviation of Y1 − Y2 is the square root of this,
or �

√
1/n1 + 1/n2. The standard error of Y1 − Y2 is obtained by substituting the

estimate sp for � in this expression, so that the confidence interval is

y1 − y2 ± t97.5 sY1−Y2
= y1 − y2 ± t97.5 sp

√
1
n1

+ 1
n2

,

in which t97.5 is the 97.5th percentile of the t-distribution with n1 + n2 − 2 degrees
of freedom. The number of degrees of freedom associated with sp is the sum of the
number of degrees of freedom associated with s1 and the number associated with
s2. Once y1 and y2 are known, there are n1 + n2 − 2 independent observations used
in computing sp.

If the two samples do not have the same true variance, other methods, which
we shall not detail here, must be used. The same method, however, leads to a good
approximation of a 95% confidence interval even if the true variances are unequal,
provided n1 = n2 (i.e. provided the two samples have the same size). When the two
samples have different sizes, we must first determine whether it is reasonable to
suppose that the two true variances are equal. This and other similar topics are the
subjects of the next chapter.

SUMMARY

1. An estimator is a rule for calculating an estimate from a set of sample values. It
is a random variable that takes on different values (estimates) from sample to
sample. The mean of n independent random variables, each with variance �2,
has variance �2/n and standard deviation �/

√
n. The latter, or its estimate s/

√
n,

is called the standard error of the mean.

2. An unbiased estimator is one whose mean is equal to the parameter being estim-
ated. The mean and variance of a random sample are unbiased estimators of the
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population mean and variance. An efficient estimator is an unbiased estimator
that has minimum variance. In the case of normally, binomially, or Poisson-
distributed random variables, the sample mean is a minimum variance unbiased
estimator. The sample mean is a robust estimator (i.e. a good estimator of the
population mean in a wide variety of situations).

3. Maximum likelihood estimates are parameter values that make the likelihood
(probability) for the sample a maximum. In large samples, maximum likelihood
estimators are usually unbiased, efficient, and normally distributed. Sometimes
they also have these properties in small samples.

4. The estimated mean ±2 standard deviations is often calculated as a ‘normal
range’ that contains about 95% of the population values. There is no guarantee
that this approximation is good unless the population is normally distributed and
the interval is calculated from a large sample. Sample means, on the other hand,
tend to be normally distributed regardless of the form of the distribution being
sampled.

5. A parameter can be said to lie within a specified interval with a certain degree
of confidence, not with any degree of probability. The estimator, but not the
estimate, of a 95% confidence interval can be said to have 95% probability of
including the parameter. A particular 95% confidence interval for the mean
should be interpreted as follows: if many such intervals were to be calculated
in the same fashion, each from a different sample, then in the long run 95% of
such intervals would include the true mean.

6. For large samples, the maximum likelihood estimate of a parameter ± twice the
standard error is an approximate 95% confidence interval for that parameter. For
sample sizes larger than 30, the sample mean ± two standard errors of the mean
provides approximate 95% confidence limits for the mean. For smaller samples
and a normally distributed random variable, 95% confidence limits are given by
y ± t97.5s/

√
n, where t97.5 is the 97.5th percentile of Student’s t-distribution with

n − 1 degrees of freedom.

7. If two independent samples come from populations with the same common
variance, a pooled estimate, s2

p, of the variance can be obtained by taking a
weighted average of the two sample variances, s2

1 with n1 − 1 degrees of freedom
and s2

2 with n2 − 1 degrees of freedom, weighting by the number of degrees of
freedom. The pooled estimate then has n1 + n2 − 2 degrees of freedom and can
be used to determine a 95% confidence interval for the difference between the
two means: y1 − y2 ± t97.5sp

√
1/n1 + 1/n2. This same interval is about correct

even if the two variances are different, provided the two sample sizes, n1 and n2,
are equal.
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PROBLEMS

1. An unbiased estimator

A. is equal to the true parameter
B. has the smallest variance of all possible estimators
C. is never an efficient estimate
D. has mean equal to the true parameter
E. is always a maximum likelihood estimate

2. If the standard error of the mean obtained from a sample of nine
observations is quoted as being three units, then nine units is

A. the true variance of the population
B. the estimated variance of the population
C. the true standard deviation of the population
D. the estimated standard deviation of the population
E. none of the above

3. We often choose different estimators for different statistical problems. An
estimator that has good properties, even when the assumptions made in
choosing it over its competitors are false, is said to be

A. unbiased
B. efficient
C. maximum likelihood
D. robust
E. minimum variance

4. For samples comprising a very large number of study units, all the following
are true of maximum likelihood estimators except

A. they are unbiased
B. they are efficient
C. they are normally distributed
D. they are unique in all applications
E. they are suitable for constructing confidence intervals

5. Parameter values that make the data we observe ‘most likely’ to occur in
a sample we have obtained are called

A. asymptotic estimates
B. confidence limits
C. robust estimates
D. maximum likelihood estimates
E. interval estimates
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6. An experimenter reports that on the basis of a sample of size 10, he calcu-
lates the 95% confidence limits for mean height to be 66 and 74 inches.
Assuming his calculations are correct, this result is to be interpreted as
meaning

A. there is a 95% probability that the population mean height lies between
66 and 74 inches

B. we have 95% confidence that a person’s height lies between 66 and 74
inches

C. we have 95% confidence that the population mean height lies between
66 and 74 inches

D. 95% of the population has a height between 66 and 74 inches
E. none of the above

7. A 99% confidence interval for a mean

A. is wider than a 95% confidence interval
B. is narrower than a 95% confidence interval
C. includes the mean with 99% probability
D. excludes the mean with 99% probability
E. is obtained as the sample average plus two standard deviations

8. In a series of journal articles, investigator A reported her data, which are
approximately normally distributed, in terms of a mean plus or minus two
standard deviations, while investigator B reported his data in terms of
a mean plus or minus two standard errors of the mean. The difference
between the two methods is

A. investigator A is estimating the extreme percentiles, whereas investig-
ator B is estimating the most usual percentiles

B. investigator A is estimating the range that she thinks contains 95%
of the means, whereas investigator B is estimating the range that he
thinks contains 95% of the medians

C. investigator A is estimating the range that she thinks contains about
95% of her data values, whereas investigator B is estimating the range
that he thinks (with 95% confidence) contains the true mean being
estimated

D. investigators A and B are really estimating the same range, but are just
using different systems of reporting

E. none of the above



150 BASIC BIOSTATISTICS FOR GENETICISTS AND EPIDEMIOLOGISTS

9. A 95% confidence interval implies that

A. the t -test gives correct intervals 95% of the time
B. if we repeatedly select random samples and construct such interval

estimates, 95 out of 100 of the intervals would be expected to bracket
the true parameter

C. the hypothesis will be false in 95 out of 100 such intervals
D. the probability that the interval is false is 95%
E. there is a 95% probability that the underlying distribution is normal

10. For Student’s t -distribution with one degree of freedom, all the following
are true except

A. it has variance 1
B. it has fatter tails than a normal distribution
C. it can be used to obtain confidence limits for the mean of a normal

distribution from a sample of two observations
D. it has mean 0
E. it is symmetric

11. In a sample of 100 normal women between the ages of 25 and 29 years,
systolic blood pressure was found to follow a normal distribution. If the
sample mean pressure was 120 mmHg and the standard deviation was
10 mmHg, what interval of blood pressure would represent an approximate
95% confidence interval for the true mean?

A. 118 to 122 mmHg
B. 100 to 140 mmHg
C. 119 to 121 mmHg
D. 110 to 130 mmHg
E. 90 to 150 mmHg

12. An investigator is interested in the mean cholesterol level of patients with
myocardial infarction. On the basis of a random sample of 50 such patients,
a 95% confidence interval for the mean has a width of 10 mg/dl. How large
a sample would be expected to have given an interval with a width of about
5 mg/dl?

A. 100
B. 200
C. 300
D. 400
E. 800

13. A researcher is interested in the population variability of a normally distrib-
uted trait and finds two estimates of its standard deviation in the literature.
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These two estimates are similar, and the researcher wishes to average
them to obtain one overall estimate. The best procedure is to

A. take the simple average of the estimated standard deviations
B. take a weighted average of the estimated standard deviations, weight-

ing them by their degrees of freedom .
C. take a simple average of the squares of the estimated standard

deviations, and then take the square root of the result
D. take a weighted average of the squares of the estimated standard devi-

ations, weighting them by their degrees of freedom, and then take the
square root of the result

E. none of the above

14. A sample of five numbers is selected, and it is found that their mean is
y =24. Given this information, the number of degrees of freedom available
for computing the sample standard deviation is

A. 1
B. 2
C. 3
D. 4
E. 5

15. An investigator wishes to estimate the mean cholesterol level in a pedi-
atric population. He decides, on the basis of a small sample, to calculate
95% confidence limits for the population mean. Since the data appear to
be normally distributed, the appropriate statistical distribution to use in
calculating the confidence interval is the

A. normal distribution
B. t -distribution
C. uniform distribution
D. binomial distribution
E. Poisson distribution





CHAPTER SEVEN

Key Concepts

research hypothesis, null hypothesis, test
criterion, significance level, p-value

one-sided (one-tail) test, two-sided
(two-tail) test

F -distribution
two-sample t -test, paired, or

matched-pair, t -test

distribution-free methods:
rank sum test
signed rank sum test
sign test

type I error, validity
type II error, power





Significance Tests and
Tests of Hypotheses

SYMBOLS AND ABBREVIATIONS
d difference between paired values
F percentile of the F distribution or the corresponding test statistic
H0 null hypothesis
p p-value (also denoted P)
T rank sum statistic
� probability of type I error: significance level (Greek letter alpha)
� probability of type II error; complement of power (Greek letter beta)

PRINCIPLE OF SIGNIFICANCE TESTING

A hypothesis is a contention that may or may not be true, but is provisionally assumed
to be true until new evidence suggests otherwise. A hypothesis may be proposed
from a hunch, from a guess, or on the basis of preliminary observations. A statistical
hypothesis is a contention about a population, and we investigate it by performing a
study on a sample collected from that population. We examine the resulting sample
information to see how consistent the ‘data’ are with the hypothesis under question;
if there are discrepancies, we tend to disbelieve the hypothesis and reject it. So the
question arises: how inconsistent with the hypothesis do the sample data have to
be before we are prepared to reject the hypothesis? It is to answer questions such
as this that we use statistical significance tests. In general, three steps are taken in
performing a significance test:

1. Convert the research hypothesis to be investigated into a specific statistical null
hypothesis. The null hypothesis is a specific hypothesis that we try to disprove.
It is usually expressed in terms of population parameters. For example, suppose
that our research hypothesis is that a particular drug will lower blood pressure.

Basic Biostatistics for Geneticists and Epidemiologists: A Practical Approach R. Elston, W. Johnson
c© 2008 John Wiley & Sons, Ltd
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We randomly assign patients to two groups: group 1 to receive the drug and
group 2 to act as controls without the drug. Our research hypothesis is that after
treatment, the mean blood pressure of group 1, �1, will be less than that of
group 2, �2. In this situation the specific null hypothesis that we try to disprove
is �1 = �2. In another situation, we might disbelieve a claim that a new surgical
procedure will cure at least 60% of patients who have a particular type of cancer,
and our research hypothesis would be that the probability of cure, �, is less than
this. The null hypothesis that we would try to disprove is � = 0.6. Another null
hypothesis might be that two variances are equal (i.e. �2

1 =�2
2 ). Notice that these

null hypotheses can be expressed as a function of parameters equaling zero,
hence the terminology null hypothesis:

�1 − �2 = 0, � − 0.6 = 0, �2
1 − �2

2 = 0.

2. Decide on an appropriate test criterion to be calculated from the sample values.
We view this calculated quantity as one particular value of a random variable
that takes on different values in different samples. Our statistical test will utilize
the fact that we know how this quantity is distributed from sample to sample
if the null hypothesis is true. This distribution is the sampling distribution of
the test criterion under the null hypothesis and is often referred to as the null
distribution. We shall give examples of several test criteria later in this chapter.

3. Calculate the test criterion from the sample and compare it with its sampling
distribution to quantify how ‘probable’ it is under the null hypothesis. We sum-
marize the probability by a quantity known as the p-value: the probability of the
observed or any more extreme sample occurring, if the null hypothesis is true.

PRINCIPLE OF HYPOTHESIS TESTING

If the p-value is large, we conclude that the evidence is insufficient to reject the
null hypothesis; for the time being, we retain the null hypothesis. If, on the other
hand, it is small, we would tend to reject the null hypothesis in favor of the research
hypothesis. In significance testing we end up with a p-value, which is a measure of
how unlikely it is to obtain the results we obtained – or a more extreme result – if in
fact the null hypothesis is true. In hypothesis testing, on the other hand, we end up
either accepting or rejecting the null hypothesis outright, but with the knowledge
that, if the null hypothesis is true, the probability that we reject it is no greater
than a predetermined probability called the significance level. Significance testing
and hypothesis testing are closely related and steps 1 and 2 indicated above are
identical in the two procedures. The difference lies in how we interpret, and act on,
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the results. In hypothesis testing, instead of step 3 indicated above for significance
testing, we do the following:

3. Before any data are collected, decide on a particular significance level – the
probability with which we are prepared to make a wrong decision if the null
hypothesis is true.

4. Calculate the test criterion from the sample and compare it with its sampling
distribution. This is done in a similar manner as for significance testing, but, as
we shall illustrate with some examples, we end up either accepting or rejecting
the null hypothesis.

TESTING A POPULATION MEAN

As an example of a particular significance test, suppose our research hypothesis is
that the mean weight of adult male patients who have been on a weight reduction
program is less than 200 lb. We wish to determine whether this is so. The three
steps are as follows:

1. We try to disprove that the mean weight is 200 lb. The null hypothesis we take
is therefore that the mean weight is 200 lb. We can express this null hypothesis
as � = 200.

2. Suppose now that, among male patients who have been on the program, weight is
normally distributed with mean 200 lb. We let Y represent weight (using upper-
case Y to indicate it is a random variable) whose specific values y depend on the
weights of the specific men in a ‘random’ sample of men. We weigh a random
sample of such men and calculate the sample mean y and standard deviation sY.
We know from theoretic considerations that

Y − μ

SY
= Y − 200

SY
, where SY = SY√

n
,

follows Student’s t-distribution with n − 1 degrees of freedom. We therefore use

t = y − 200
sY

as our test criterion: we know its distribution from sample to sample is a
t-distribution if the mean of Y is in fact 200 and Y is normally distributed.
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3. Suppose our sample consisted of n = 10 men on the program, and we calculated
from this sample y=184 and sY =26.5 (and hence, sy =26.5/

√
10=8.38). Thus,

t = 184 − 200
8.38

= −1.9.

We now quantify the ‘probability’ of a finding a sample value of t that is as extreme
as, or even more extreme than, this as follows. From a table of Student’s t-
distribution we find, for 10−1=9 degrees of freedom, the following percentiles:

%: 2.5 5 95 97.5
t-value: −2.262 −1.833 1.833 2.262

(Because, like the standard normal distribution, the t-distribution is symmetric
about zero, we see that t2.5 = −t97.5 = −2.262 and t5 = −t95 = −1.833, where
tq is the qth percentile of the t-distribution.) The value we found, −1.9, lies
between the 2.5th and 5th percentiles. Pictorially, the situation is as illustrated
in Figure 7.1. If the sample resulted in a calculated value of t somewhere near 0,
this would be a ‘probable’ value and there would be no reason to suspect the null
hypothesis. The t-value of −1.9 lies, however, below the 5th percentile (i.e. if the
null hypothesis is true, the probability is less than 0.05 that t should be as far to the
left as −1.9). We are therefore faced with what the famous statistician Sir Ronald
Fisher (1890–1962) called a ‘logical disjunction’: either the null hypothesis is not
true, or, if it is true, we have observed a rare event – one that has less than 5%
probability of occurring simply by chance. Symbolically this is often written, with
no further explanation, p<0.05. It is understood that p (also often denoted P)
stands for the probability of observing what we actually did observe, or anything
more extreme, if the null hypothesis is true. Thus, in our example, p is the area
to the left of −1.9 under the curve of a t-distribution with 9 degrees of freedom.
The area is about 4.5%, and this fact can be expressed as p ∼= 0.045.

2.5th percentile

5th percentile 95th percentile

97.5th percentile

–2.26 –1.83 1.83 2.260

Observed t

Figure 7.1 Comparison of the observed t =−1.9 with Student’s t-distribution with nine
degrees of freedom.
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Because the p-value is no larger than 0.05, we say that the result is significant
at the 5% level, or that the mean is significantly less than 200 lb at the 5% level.
We can also say the result is significant at the 4.5% level, because the p-value is no
larger than 4.5%. Similarly, we can say that the result is significant at the 0.1 level,
because 0.1 is larger than p. In fact we can say that the result is significant at any
level greater than 4.5%, and not significant at any level less than 4.5%.

Notice, however, what the null hypothesis was (i.e. what was assumed to obtain
the distribution of the test criterion). We assumed the theoretical population of
weights had both a normal distribution and a mean of 200 lb. We also assumed, in
order to arrive at a statistic that should theoretically follow the t-distribution, that
the n weights available constitute a random sample from that population. All these
assumptions are part of the null hypothesis that is being tested, and departure from
any one of them could be the cause of a significant result. Provided we do have
a random sample and a normal distribution, however, either we have observed an
unlikely outcome (p = 0.045) or, contrary to our initial assumption, the mean is less
than 200 lb.

Rather than perform a significance test, the result of which is a p-value, many
investigators perform a hypothesis test: at the beginning of a study, before any data
are collected, they pick a specific level (often 5% or 1%) as a cutoff, and decide to
‘reject’ the null hypothesis for any result significant at that level. It is a common (but
arbitrary) convention to consider any value of p greater than 0.05 as ‘not significant’.
The idea behind this is that one should not place too much faith in a result that, by
chance alone, would be expected to occur with a probability greater than 1 in 20.
Other conventional phrases that are sometimes used are

0.01<p<0.05: ‘significant’,
0.001<p<0.01: ‘highly significant’,

p<0.001: ‘very highly significant’.

This convention is quite arbitrary, and arose originally because the cumulative
probabilities of the various sampling distributions (such as the t-distribution) are
not easy to calculate, and so had to be tabulated. Typical tables, so as not to be
too bulky, include just a few percentiles, such as the 90th, 95th, 97.5th, 99th, and
99.5th percentiles, corresponding to the tail probabilities 0.1, 0.05, 0.025, 0.01,
and 0.005 for one tail of the distribution. Now that computers and calculators are
commonplace, however, it is becoming more and more common to calculate and
quote the actual value of p. Although many investigators still use a significance
level of 0.05 for testing hypotheses, it is clearly absurd to quote a result for which
p=0.049 as ‘significant’ and one for which p=0.051 merely as ‘not significant’: it is
far more informative to quote the actual p-values, which an intelligent reader can
see are virtually identical in this case.
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Note that we have defined the meaning of ‘significant’ in terms of probability:
in this sense it is a technical term, always to be interpreted in this precise way. This
is often emphasized by saying, for example, ‘the result was statistically significant’.
Such a phrase, however, although making it clear that significance in a probability
sense is meant, is completely meaningless unless the level of significance is also
given. (The result of every experiment is statistically significant at the 100% level,
because the significance level can be any probability larger than p!) It is important
to realize that statistical significance is far different from biological significance.
If we examine a large enough sample, even a biologically trivial difference can be
made to be statistically significant. Conversely, a difference that is large enough to
be of great biological significance can be statistically ‘not significant’ if a very small
sample size is used. We shall come back to this point at the end of the chapter.

Notice carefully the definition of p: the probability of observing what we actu-
ally did observe, or anything more extreme, if the null hypothesis is true. By ‘anything
more extreme’ we mean any result that would alert us even more (than the result
we actually observed) to the possibility that our research hypothesis, and not the
null hypothesis, is true. In our example, the research hypothesis is that the mean
weight is less than 200 lb; therefore a sample mean less than 200 lb (which would
result in a negative value of t) could suggest that the research hypothesis is true,
and any value of t less than (i.e. more negative than) −1.9 would alert us even more
to the possibility that the null hypothesis is not true. A t-value of +2.5, on the other
hand, would certainly not suggest that the research hypothesis is true.

ONE-SIDED VERSUS TWO-SIDED TESTS

Now suppose, in the above example, that we had wished to determine whether the
mean weight is different from 200 lb, rather than is less than 200 lb. Our research
hypothesis is now that there is a difference, but in an unspecified direction. We
believe that the program will affect weight but are unwilling to state ahead of time
whether the final weight will be more or less than 200 lb. Any extreme deviation
from 200 lb, whether positive or negative, would suggest that the null hypothesis is
not true. Had this been the case, not only would a t-value less than −1.9 be more
extreme, but so also would any t-value greater than +1.9. Thus, because of the
symmetry of the t-distribution, the value of p would be double 4.5%, that is, 9%:
we add together the probability to the left of −1.9 and the probability to the right
of +1.9 (i.e. the probabilities in both tails of the distribution).

We see from this discussion that the significance level depends on what we had
in mind before we actually sampled the population. If we knew beforehand that
the weight reduction program could not lead to the conclusion that the true mean
weight is above 200 lb, our question would be whether the mean weight is less than
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200 lb. We would perform what is known as a one-sided test (also referred to as a
one-directional or one-tail test), using only the left-hand tail of the t-distribution;
and we would report the resulting t = −1.9 as being significant at the 5% level. If,
on the other hand, we had no idea originally whether the program would lead to a
mean weight above or below 200 lb, the question of interest would be whether or
not the true mean is different from 200 lb. We would then perform a two-sided test
(also referred to as a two-directional or two-tail test), using the probabilities in both
the left- and right-hand tails of the t-distribution; and for our example, a t-value of
−1.9 would then not be significant at the 5% level, although it would be significant
at the 10% level (p = 0.09). In many (but certainly not all) genetic situations it is
known which direction any difference must be, but this is much less likely to be the
case in epidemiological studies.

There is a close connection between a two-sided test and a confidence interval.
Let us calculate the 95% and 90% confidence intervals for the mean weight of men
on the weight-reduction program. We have

n = 10, y = 184, sY = 8.38.

In the previous section, we saw that for 9 degrees of freedom, t97.5 = 2.262 and
t95 = 1.833. We therefore have the following confidence intervals:

95% confidence interval, 184 ± 2.262 × 8.38, or 165.0 to 203.0;
90% confidence interval, 184 ± 1.833 × 8.38, or 168.6 to 199.4.

The 95% interval includes the value 200, whereas the 90% interval does not. In
general, a sample estimate (184 in this example) will be significantly different from
a hypothesized value (200) if and only if the corresponding confidence interval for
the parameter does not include that value. A 95% confidence interval corresponds
to a two-sided test at the 5% significance level: the interval contains 200, and the
test is not significant at the 5% level. A 90% confidence interval corresponds to
a test at the 10% significance level: the interval does not include 200, and the
test is significant at the 10% level. In general, a 100(1 − α)% confidence interval
corresponds to a two-sided test at the significance level �, where 0 < � < 1.

TESTING A PROPORTION

Suppose an investigator disputes a claim that, using a new surgical procedure for a
risky operation, the proportion of successes is at least 0.6. The true proportion of
successes � is known to lie somewhere in the interval 0 ≤ � ≤ 1 but, if the claim
is valid, it is in the interval 0.6 ≤ � ≤ 1. The closer � is to 0, the more likely the
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sample evidence will lead to a conclusion that refutes the claim. On the other hand,
the closer � is to 1, the more likely the resulting conclusion is consistent with the
claim. The investigator is interested in showing that the proportion is in fact less
than 0.6. The three steps for a significance test of this research hypothesis are then
as follows:

1. We choose as our null hypothesis the value of � in the interval 0.6 ≤ � ≤ 1 that
is least favorable to the claim in the sense that it is the value that would be
least likely to result in data that support the claim. The least favorable choice is
clearly � =0.6, so we take as our null hypothesis that the proportion of successes
is 0.6 (i.e. � = 0.6); we shall see whether the data are consistent with this null
hypothesis, or whether we should reject it in favor of � < 0.6.

2. Let Y represent the number of successes. We see that Y is a random variable
that is binomially distributed and can take on the values 0, 1, . . . , 10. In this
context, we can use Y as our test criterion; once the sample size is determined,
its distribution is known if in fact � = 0.6 and Y is binomially distributed.

3. We select a random sample of operations in which this new procedure is used, say
n = 10 operations, and find, let us suppose, y = 3 successes. From the binomial
distribution with n = 10 and � = 0.6, the probability of each possible number of
successes is as follows:

Number of Sucesses Probability

0 0.0001
1 0.0016
2 0.0106
3 0.0425
4 0.1115
5 0.2007
6 0.2508
7 0.2150
8 0.1209
9 0.0403

10 0.0060

Total 1.0000

To determine the p-value, we sum the probabilities of all outcomes as extreme
or more extreme than the one observed. The ‘extreme outcomes’ are those that
suggest the research hypothesis is true and alert us, even more than the sample
itself, to the possibility that the null hypothesis is false. If � = 0.6, we expect, on an
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average, 6 successes in 10 operations. A series of 10 operations with significantly
fewer successes would suggest that � <0.6, and hence that the research hypothesis
is true and the null hypothesis is false. Thus, 0, 1, 2, or 3 successes would be as
extreme as, or more extreme than, the observed y = 3. We sum the probabilities
of these four outcomes to obtain 0.0001 + 0.0016 + 0.0106 + 0.0425 = 0.0548 (i.e.
p = 0.0548).

We find it difficult to believe that we would be so unlucky as to obtain an out-
come as rare as this if � is 0.6, as claimed. We believe, rather, that � < 0.6, because
values of � in the interval 0 ≤ � < 0.6 would give rise to larger probabilities (com-
pared to values of � in the interval 0.6 ≤ � ≤ 1) of observing 0, 1, 2, or 3 successes
in 10 operations. We are therefore inclined to disbelieve the null hypothesis and
conclude that the probability of success using the new procedure is less than 0.6.
Specifically, we can say that the observed proportion of successes, 3 out of 10, or
0.3, is significantly less than 0.6 at the 6% level.

Let us suppose, for illustrative purposes, that a second sample of 10 oper-
ations had resulted in y = 8 successes. Such an outcome would be consistent
with the null hypothesis. All y values less than 8 would be closer to the research
hypothesis than the null hypothesis, and so the p-value for such an outcome
would be

P(0) + P(1) + . . .+ P(8) = 1 − P(9) − P(10)

= 1 − 0.0403 − 0.0060

= 0.9536.

In this instance it is obvious that we should retain the null hypothesis (i.e. the data
are consistent with the hypothesis that the probability of a success using the new
procedure is at least 0.6). But note carefully that ‘being consistent with’ a hypothesis
is not the same as ‘is strong evidence for’ a hypothesis. We would be much more
convinced that the hypothesis is true if there had been 800 successes out of 1000
operations. ‘Retaining’ or ‘accepting’ the null hypothesis merely means that we do
not have sufficient evidence to reject it – not that it is true.

If the number of operations had been large, much effort would be needed to
calculate, from the formula for the binomial distribution, the probability of each
possible more extreme outcome. Suppose, for example, there had been n = 100
operations and the number of successes was y = 30, so that the proportion of
successes in the sample is still 0.3, as before. In this case, it would be necessary to
calculate the probabilities of 0, 1, 2, . . . right on up to 30 successes, in order to obtain
the exact p-value. But in such a case we can take advantage of the fact that n is large.
When n is large we know that the average number of successes per operation, Y/n
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(i.e. the proportion of successes) is approximately normally distributed. The three
steps for a test are then as follows:

1. The null hypothesis is � = 0.6, as before.
2. Because both n� and n(1−�) are greater than 5 under the null hypothesis (they

are 60 and 40, respectively), we assume that Y/n is normally distributed with
mean 0.6 and standard deviation

√
0.6(1 − 0.6)/n =√

0.24/100 = 0.049. Under
the null hypothesis, the standardized variable

Z = Y/n − 0.6
0.049

approximately follows a standard normal distribution and can be used as the test
criterion.

3. We observe y/n = 0.3 and hence

z = 0.3 − 0.6
0.049

= −6.12

and any value of z less than this is more extreme (i.e. even less consistent
with the null hypothesis). Consulting the probabilities for the standard normal
distribution,), we find

P(Z < −3.49) = 0.0002

and P(Z < −6.12) must be even smaller than this. We are thus led to reject the
null hypothesis at an even smaller significance level.

We can see the improvement in the normal approximation of the binomial
distribution with increasing sample sizes from the following probabilities, calculated
on the assumption that � = 0.6.

P(Y/n ≤ 0.3)

Sample Size Binomial Normal

10 0.0548 0.0264
20 0.0065 0.0031
30 0.0009 0.0004

If we restrict our attention to the first two decimal places, the difference in
p-values is about 0.03 for a sample of size 10, but less than 0.01 for a sample of size
20 or larger.
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The binomial distribution, or the normal approximation in the case of a large
sample, can be used in a similar manner to test hypotheses about any percentile of a
population distribution. As an example, suppose we wish to test the hypothesis that
the median (i.e. the 50th percentile) of a population distribution is equal to a par-
ticular hypothetical value. A random sample of n observations from the distribution
can be classified into two groups: those above the hypothetical median and those
below the hypothetical median. We then simply test the null hypothesis that the
proportion above the median (or equivalently, the proportion below the median) is
equal to 0.5 (i.e. � =0.5). This is simply a special case of testing a hypothesis about a
proportion in a population. If we ask whether the population median is smaller than
the hypothesized value, we perform a one-sided test similar to the one performed
above. If we ask whether it is larger, we similarly perform a one-sided test, but
the appropriate p-value is obtained by summing the probabilities in the other tail.
If, finally, we ask whether the median is different from the hypothesized value, a
two-sided test is performed, summing the probabilities of the extreme outcomes in
both tails to determine whether to reject the null hypothesis.

TESTING THE EQUALITY OF TWO VARIANCES

Often, we wish to compare two samples. We may ask, for example, whether the
distribution of serum cholesterol levels is the same for males and females in a set of
patients. First, we could ask whether the distribution in each population is normal,
and there are various tests for this. If we find the assumption of normality reason-
able, we might then assume normality and ask whether the variance is the same
in both populations from which the samples come. Note that this null hypothesis,
σ 2

1 =σ 2
2 , can be expressed as σ 2

1 /σ 2
2 = 1. Let the two sample variances be s2

1 and s2
2.

Then an appropriate criterion to test the null hypothesis that the two population
variances are equal is the ratio s2

1/s2
2. Provided the distribution in each popula-

tion is normal, under the null hypothesis this statistic has a distribution known as
the F-distribution, named in honor of Sir Ronald A. Fisher. The F-distribution is
a two-parameter distribution, the two parameters being the number of degrees
of freedom in the numerator (s2

1) and the number of degrees of freedom in the
denominator (s2

2). If the sample sizes of the two groups are n1 and n2, then the
numbers of degrees of freedom are, respectively, n1 − 1 and n2 − 1. All tables of
the F-distribution follow the convention that the number of degrees of freedom
along the top of the table corresponds to that in the top of the F-ratio (n1 − 1),
whereas that along the side of the table corresponds to that in the bottom of the
F-ratio (n2 − 1). The table is appropriate for testing the null hypothesis σ 2

1 = σ 2
2

against the alternative σ 2
1 > σ 2

2 , for which large values of F are significant, and so
often only the larger percentiles are tabulated. This is a one-sided test. If we wish
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to perform a two-sided test, we put the larger of the two sample variances, s2
1 or s2

2,
on top and double the tail probability indicated by the table.

A numerical example will illustrate the procedure. Suppose we have a sample
of n1 = 10 men and n2 = 25 women, with sample variances s2

1 = 30.3 and s2
2 = 69.7,

respectively, for a trait of interest. We wish to test the null hypothesis that the two
population variances are equal (i.e. σ 2

1 =σ 2
2 ). We have no prior knowledge to suggest

which might be larger, and so we wish to perform a two-sided test. We therefore
put the larger sample variance on top to calculate the ratio

69.7
30.3

= 2.30

There are 25 − 1 = 24 degrees of freedom in the top of this ratio and 10 − 1 = 9
degrees of freedom in the bottom. Look at the columns headed 24, and
the rows labeled 9, in the four tables of the F distribution you can find at
http://www.statsoft.com/textbook/stathome.html?sttable.html, respectively for four
different values of ‘alpha’:

alpha: 0.1 0.05 0.025 0.01
%: 90 95 97.5 99

F-value: 2.27683 2.9005 3.6142 4.729

The tables are labeled ‘alpha’ and each value of alpha corresponds to a percentile.
The reason for this will be clearer later when we discuss validity and power, but for
the moment notice that alpha = 1 – percentile/100. The observed ratio, 2.30, lies
between the 90th and 95th percentiles, corresponding to tail probabilities of 0.1 and
0.05. Because we wish to perform a two-sided test, we double these probabilities to
obtain the p-value. The result would thus be quoted as 0.1 < p < 0.2, or as p .= 0.2
(since 2.30 is close to 2.28).

In this instance we might decide it is reasonable to assume that although the
two variances may be unequal their difference is not significant. As we learned in
Chapter 6, the common, or ‘pooled,’ variance is then estimated as

s2
p = (n1 − 1) s2

1 + (n2 − 1) s2
2

n1 + n2 − 2
,

which in this case is

s2
p = 9 × 30.3 + 24 × 69.7

9 + 24
= 59.0.

This estimate is unbiased.
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Note once again that the null hypothesis is not simply that the two variances
are equal, although the F-test is often described as a test for the equality of two
variances. For the test criterion to follow an F-distribution, each sample must also
be made up of normally distributed random variables. In other words, the null
hypothesis is that the two samples are made up of independent observations from
two normally distributed populations with the same variance. The distribution of
the F-statistic is known to be especially sensitive to nonnormality, so a significant
result could be due to nonnormality and have nothing to do with whether or not
the population variances are equal.

TESTING THE EQUALITY OF TWO MEANS

Suppose now we can assume that the random variables of interest are normally
distributed, with the same variance in the two populations. Then we can use a two-
sample t-test to test whether the means of the random variable are significantly
different in the two populations. Let Y1 and Y2 be the two sample means. Then,
under the null hypothesis that the two population means are the same, Y1 − Y2 will
be normally distributed with mean zero. Furthermore, provided the observations
in the two groups are independent (taking separate random samples from the two
populations will ensure this), the variance of Y1 − Y2 will be σ 2

Y1
+ σ 2

Y2
, that is.,

�2/n1 + �2/n2, where �2 is the common variance. Thus

Y1 − Y2√
σ 2

Y1
+ σ 2

Y2

= Y1 − Y2

σ

√
1
n1

+ 1
n2

will follow a standard normal distribution and, analogously,

Y1 − Y2

Sp

√
1
n1

+ 1
n2

will follow a t-distribution with n1 + n2 − 2 degrees of freedom; in this formula we
have replaced � by Sp, the square root of the pooled variance estimator. Thus, we
calculate

t = y1 − y2

sp

√
1
n1

+ 1
n2
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and compare it with percentiles of the t-distribution with n1 + n2 − 2 degrees of
freedom. As before, if n1 + n2 − 2 is greater than 30, the percentiles are virtually
the same as for the standard normal distribution.

Suppose, for our example of n1 = 10 men and n2 = 25 women, we found the
sample means y1 = 101.05 and y2 = 95.20. We have already seen that s2

p = 59.0,
and so sp =√

59.0 = 7.68. To test whether the means are significantly different, we
calculate

t = y1 − y2

sp

√
1
n1

+ 1
n2

= 101.05 − 95.20

7.68

√
1

10
+ 1

25

= 2.0358.

There are 9 + 24 = 33 degrees of freedom, and the 97.5th percentile of the
t-distribution is 2.0345. Thus, p is just a shade below 0.025 for a one-sided test
and 0.05 for a two-sided test.

Note carefully the assumption that the two samples are independent. Often
this assumption is purposely violated in designing an experiment to compare two
groups. Cholesterol levels, for example, change with age; so if our sample of men
were very different in age from our sample of women, we would not know whether
any difference that we found was due to gender or to age (i.e. these two effects
would be confounded). To obviate this, we could take a sample of men and women
who are individually matched for age. We would still have two samples, n men and
n women, but they would no longer be independent. We would expect the pairs of
cholesterol levels to be correlated, in the sense that the cholesterol levels of a man
and woman who are the same age will tend to be more alike than those of a man and
woman who are different ages (the term ‘correlation’ will be defined more precisely
in Chapter 10). In the case where individuals are matched, an appropriate test for a
mean difference between the two populations is the paired t-test, or matched-pair
t-test. We pair the men and women and find the difference – which we denote by
d – in cholesterol level for each pair (taking care always to subtract the cholesterol
level of the male member of each pair from that of the female member, or always
vice versa). Note that some of the differences may be positive while others may
be negative. Then we have n values of d and, if the null hypothesis of no mean
difference between male and female is true, the d-values are expected to have
mean zero. Thus we calculate

t = d
sD

= d
sD/

√
n

,

where d is the mean of the n values of d and sD is their estimated standard devi-
ation, and compare this with percentiles of the t-distribution with n − 1 degrees of
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freedom. This test assumes that the differences (the d-values) are normally distrib-
uted. Notice our continued use of capital letters to denote random variables and
lower case letters for their specific values. Thus, D is the random variable denoting
a difference and sD denotes the estimated standard deviation of D.

TESTING THE EQUALITY OF TWO MEDIANS

The median of a normal distribution is the same as its mean. It follows that if
our sample data come from normal distributions, testing for the equality of two
medians is the same as testing for the equality of two means. If our samples do not
come from normal distributions, however, we should not use the t-distribution as
indicated above to test for the equality of two means in small samples. Furthermore,
if the population distributions are at all skewed, the medians are better parameters
of central tendency. We should then probably be more interested in testing the
equality of the two medians than in testing the equality of the two population means.
In this section we shall outline methods of doing this without making distributional
assumptions such as normality. For this reason the methods we shall describe are
sometimes called distribution-free methods. We shall indicate statistics that can be
used as criteria for the tests and note that for large samples they are approximately
normally distributed, regardless of the distributions of the underlying populations.
It is beyond the scope of this book to discuss the distribution of all these statistics
in small samples, but you should be aware that appropriate tables are available for
such situations.

First, suppose we have two independent samples: n1 observations from one
population and n2 observations from a second population. Wilcoxon’s rank sum test
is the appropriate test in this situation, provided we can assume that the distributions
in the two populations, while perhaps having different medians, have the same
(arbitrary) shape. The observations in the two samples are first considered as a
single set of n1 + n2 numbers, and arranged in order from the smallest to largest.
Each observation is assigned a rank: 1 for the smallest observation, 2 for the next
smallest, and so on, until n1 + n2 is assigned to the largest observation. The ranks
of the observations in the smaller of the two samples are then summed, and this
is the statistic, which we denote T, whose distribution is known under the null
hypothesis. Percentile points of the distribution of T have been tabulated, but
for large samples we can assume that T is approximately normally distributed. (An
alternative method of calculating a test criterion in this situation is called the Mann–
Whitney test. Wilcoxon’s test and the Mann–Whitney test are equivalent and so we
omit describing the calculation of the latter. It is also of interest to note that these
two tests are equivalent, in large samples, to performing a two-sample t-test on the
ranks of the observations).
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As an example, suppose we wish to compare the median serum cholesterol
levels in milligrams per deciliter for two groups of students, based on the following
samples:

Sample 1, n1 = 6: 58, 92, 47, 126, 53, 85
Sample 2, n2 = 7: 87, 199, 124, 83, 115, 68, 156

The combined set of numbers and their corresponding ranks are:

47 53 58 68 83 85 87 92 115 124 126 156 199
1 2 3 4 5 6 7 8 9 10 11 12 13

The underlined ranks correspond to the smaller sample, their sum being 1 + 2 +
3 + 6 + 8 + 11 = 31. Although the samples are not really large enough to justify
using the large-sample normal approximation, we shall nevertheless use these data
to illustrate the method. We standardize T by subtracting its mean and dividing
by its standard deviation, these being derived under the null hypothesis that the
two medians are equal. The result is then compared with percentiles of the normal
distribution. If n1 ≤ n2 (i.e. n1 is the size of the smaller sample) it is shown in
the Appendix that the mean value of T is n1(n1 + n2 + 1)/2, which in this case
is 6(6 + 7 + 1)/2 = 42. Also, it can be shown that the standard deviation of T is√

n1n2(n1 + n2 + 1)/12, which in our example is
√

6 × 7 × 14/12 = 7. Thus, we
calculate the standardized criterion

z = 31 − 42
7

= −1.57.

Looking this up in a table of the standard normal distribution, we find it lies at
the 5.82th percentile, which for a two-sided test corresponds to p = 0.1164. In
fact, tables that give the percentiles of the exact distribution of T also indicate that
0.1 < p < 0.2, so in this instance the normal approximation does not mislead us.

Let us now suppose the samples were taken in such a way that the data are
paired, with each pair consisting of one observation from each population. The study
units might be paired, for example, in a randomized block experimental design
in which each block consists of only two subjects (of the same age and gender)
randomly assigned to one or the other of two treatments. Paired observations could
also arise in situations in which the same subject is measured before and after
treatment.

Because the study units are paired, the difference in the observation of interest
can be computed for each pair, taking care always to calculate the difference in the
same direction. These differences can then be analyzed by Wilcoxon’s signed rank
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(sum) test as follows: First we rank the differences from smallest to largest, without
regard to the sign of the difference. Then we sum the ranks of the positive and
negative differences separately, and the smaller of these two numbers is entered
into an appropriate table to determine the p-value. For large samples we can again
use a normal approximation, using the fact that under the null hypothesis the mean
and the standard deviation of the sum depend only on the number of pairs, n. As
an example of this test, let us suppose that eight identical twin pairs were studied
to investigate the effect of a triglyceride-lowering drug. A member of each pair was
randomly assigned to either the active drug or a placebo, with the other member
of the pair receiving the other treatment.

The resulting data are as follows (triglyceride values are in mg/dl):

Twin pair 1 2 3 4 5 6 7 8
Placebo twin 71 65 126 111 249 198 57 97
Active drug twin 69 52 129 75 226 181 46 93
Difference 2 13 –3 36 23 17 11 4
Rank (ignoring sign) 1 5 2 8 7 6 4 3

The sum of the ranks of the positive differences is 1+5+8+7 +6+4+3=34, and
that of the negative differences (there is only one) is 2. If we were to look up 2 in the
appropriate table for n=8, we would find, for a two-tail test, 0.02<p<0.05. Hence,
we would reject the hypothesis of equal medians at p = 0.05, and conclude that the
active drug causes a (statistically) significant reduction in the median triglyceride
level.

The large-sample approximation will now be computed for this example, to
illustrate the method. Under the null hypothesis, the mean of the sum is n(n+1)/4
and the standard deviation is

√
n(n + 1)(2n + 1)/24. Thus, when n = 8, the mean

is 8 × 9/4 = 18 and the standard deviation is
√

8 × 9 × 17/24 = √
51 = 7.14. We

therefore calculate

z = 2 − 18
7.14

= −2.24

which, from a table of the standard normal distribution, lies at the 1.25th percentile.
For a two-sided test, this corresponds to p=0.025. Thus, even for as small a sample
as this, we once again find that the normal approximation is adequate.

Let us now briefly consider another way of testing the same hypothesis. If the
medians are equal in the two populations, then on an average, the number of positive
differences in the sample will be the same as the number of negative differences.
In other words, the mean proportion of positive differences would be 0.5 in the
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population (of all possible differences). Thus, we can test the null hypothesis that
the proportion of positive differences is � = 0.5. This is called the sign test. For a
sample size n = 8 as in the above data, we have the following binomial distribution
under the null hypothesis (� = 0.5):

Number of Minus Signs Probability

0 0.0039
1 0.0313
2 0.1094
3 0.2188
4 0.2734
5 0.2188
6 0.1094
7 0.0313
8 0.0039

Thus, the probability of observing a result as extreme or more extreme than a single
minus sign under the null hypothesis is

P(0) + P(1) + P(7) + P(8) = 0.0039 + 0.0313 + 0.0313 + 0.0039 = 0.0703.

(We sum the probabilities in both tails, for a two-sided test). This result, unlike
the previous one based on the same data, is no longer significant at the 5% sig-
nificance level. Which result is correct, this one or the previous one? Can both
be correct? To understand the difference we need to learn about how we judge
different significance and hypothesis testing procedures.

VALIDITY AND POWER

Sometimes we have to make a definite decision one way or another about a particular
hypothesis; in this situation a test of hypothesis is appropriate. Although in science
we never accept a hypothesis outright, but rather continually modify our ideas and
laws as new knowledge is obtained, in some situations, such as in clinical practice,
we cannot afford this luxury. To understand the concepts of validity and power,
it will be helpful if we consider the case in which a decision must be made, one
way or the other, with the result that some wrong decisions will inevitably be made.
Clearly, we wish to act in such a way that the probability of making a wrong decision
is minimized.
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Let us suppose we perform a test of hypothesis, with the result that we either
accept or reject the null hypothesis, for which from now on we shall use the abbre-
viation H0. In the ‘true state of nature’ H0 must be actually true or false, so we have
just four possibilities, which we can depict as the entries in a 2 × 2 table as follows:

True state of nature

H0 is true H0 is false

Decision made
Accept H0 OK Type II error

Reject H0 Type I error OK

In the case of two of the possibilities, the entries ‘OK’ represent ‘the decision is
correct,’ and hence no error is made. In the case of the other two possibilities, a
wrong decision, and hence an error, is made. The error may be one of two types:

Type I Rejection of the null hypothesis when in fact it is true. The probability of
this happening is often denoted � (i.e. � = P(reject H0|H0 is true)).

Type II Acceptance of the null hypothesis when in fact it is false. The probability
of this happening is often denoted � (i.e. � = P(accept H0|H0 is false)]).

When performing a test of hypothesis, the significance level � is the probability
of making a type I error, and we control it so that it is kept reasonably small. Suppose,
for example, we decide to fix � at the value 0.05. It is our intention to not reject the
null hypothesis if the result is not significant at the 5% level and to reject it if it is. We
say ‘we do not reject the null hypothesis’ if the result is not significant because we
realize that relatively small departures from the null hypothesis would be unlikely
to produce data that would give strong reason to doubt this null hypothesis. On
the other hand, when we reject the null hypothesis we do so with strong conviction
because we know that if this null hypothesis is true and our methods are sound,
there is only a 5% chance we are wrong. Then, provided our test does in fact reject
H0 in 5% of the situations in which H0 is true, it is a valid test at the 5% level.
A valid test is one that rejects H0 in a proportion � of the situations in which H0 is
true, where � is the stated significance level. Suppose we have a sample of paired
data from two populations that are normally distributed with the same variance. In
order to test whether the two population medians are equal, we could use (1) the
paired t-test, (2) the signed rank sum test, or (3) the sign test. The fact that we have
normal distributions does not in any way invalidate the signed rank sum and the
sign tests. Provided we use the appropriate percentiles of our test criteria (e.g. the
5th percentile or the 95th percentile for a one-sided test) to determine whether
to reject the null hypothesis, we shall find that, when it is true, we reject H0 with
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5% probability. This will be true of all three tests; they are all valid tests in this
situation.

Although they are all valid, the three tests nevertheless differ in the value
of �, or probability of type II error. In other words, they differ in the probability
of accepting the null hypothesis when it is false (i.e. when the medians are in fact
different). In this situation we are most likely to reject the null hypothesis when
using the t-test, less likely to do so when using the signed rank sum test, and least
likely to do so when using the sign test. We say that the t-test is more powerful
than the signed rank sum test, and the signed rank sum test is more powerful than
the sign test. Power is defined as 1 − �. It is the probability of rejecting the null
hypothesis when in fact it is false. Note that if we identify the null hypothesis with
absence of a disease, there is an analogy between the power of a statistical test and
the sensitivity of a diagnostic test (defined in Chapter 3).

Now suppose we do not have normal distributions, but we can assume that
the shape of the distribution is the same in both populations. If this is the case, the
paired t-test may no longer be valid, and then the fact that it might be more powerful
is irrelevant. Now in large samples, the t-test is fairly robust against nonnormality
(i.e. the test is approximately valid even when we do not have underlying normal
distributions). But this is not necessarily the case in small samples. We should not
use the t-test for small samples if there is any serious doubt about the underlying
population distributions being approximately normal. Note that if the samples are
large enough for the t-test to be robust, then we do not need to refer the test statistic
to the t-distribution. We saw in the last chapter that the t-distribution with more
than 30 degrees of freedom has percentiles that are about the same as those of the
standard normal distribution.

If we cannot assume that the shape of the distribution is about the same in
both populations, then both the paired t-test and the signed rank sum test may
be invalid, and we should use the sign test even though it is the least powerful
when that assumption is met. This illustrates a general principle of all statistical
tests: The more we can assume, the more powerful our test can be. This same
principle is at work in the distinction between one-sided and two-sided tests. If we
are prepared to assume, prior to any experimentation, that the median of popu-
lation 1 cannot be smaller than that of population 2, we can perform a one-sided
test. Then, to attain a p-value less than a pre-specified amount, our test criterion
need not be as extreme as would be necessary for the analogous two-sided test.
Thus a one-sided test is always more powerful than the corresponding two-sided
test.

We often do not control �, the probability of making an error if H0 is false,
mainly because there are many ways in which H0 can be false. It makes sense,
however, to have some idea of the magnitude of this error before going to the
expense of conducting an experiment. This is done by calculating 1 − �, the power
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of the test, and plotting it against the ‘true state of nature’. Just as the sensitivity
of a diagnostic test to detect a disease usually increases with the severity of the
disease, so the power of a statistical test usually increases with departure from H0.
For example, for the two-sided t-test of the null hypothesis �1 = �2, we can plot
power against �1 − �2, as in Figure 7.2. Note that the ‘power curve’ is symmetrical
about �1 − �2 = 0 (i.e. about �1 = �2), since we are considering a two-sided test.
Note also that the probability of rejecting H0 is a minimum when H0 is true (i.e.
when �1 − �2 = 0), and that at this point it is equal to �, the significance level. The
power increases as the absolute difference between �1 and �2 increases (i.e. as the
departure from H0 increases).

α = P (reject H0|H0 true)

P (reject H0|μ1–μ 2)

–3
0

0.5

1.0

–2 –1 0 1 2 3

Larger sample size

Smaller sample size

m1 – m 2

Figure 7.2 Examples of the power of the two-sided t-test for the difference between
two means, �1 and �2, plotted against �1 − �2.

As you might expect, power also depends on the sample size. We can always
make the probability of rejecting H0 small by studying a small sample. Hence, not
finding a significant difference or ‘accepting H0’ must never be equated with the
belief that H0 is true: it merely indicates that there is insufficient evidence to reject
H0 (which may be due to the fact that H0 is true, or may be due to a sample size that
is too small to detect differences other than those that are very large). It is possible to
determine from the power curve how large the difference �1 −�2 must be in order
for there to be a good chance of rejecting H0 (i.e. of observing a difference that is
statistically significant). Also, we could decide on a magnitude for the real difference
that we should like to detect, and then plot against sample size the power of the
test to detect a difference of that magnitude. This is often done before conducting
a study, in order to choose an appropriate sample size. Power also depends on the
variability of our measurements, however; the more variable they are, the less the
power. For this reason power is often expressed as a function of the standardized
difference (�1 −�2)/�, where it is assumed that the two populations have the same
standard deviation. For example, a small difference is often considered to be less
than 0.2�, a medium difference between 0.2� and 0.8�, and a large difference one
that is larger than 0.8�.
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In summary, there are six ways to increase power when testing a hypothesis
statistically:

1. Use a ‘larger’ significance level. This is often less desirable than other options
because it results in a larger probability of type I error.

2. Use a larger sample size. This is more expensive, so the increase must be balanced
against affordability.

3. Consider only larger deviations from H0. This may be less desirable, but note that
there is no point in considering differences that are too small to be biologically
or medically significant.

4. Reduce variability, either by making more precise measurements or by choosing
more homogeneous study units.

5. Make as many valid assumptions as possible (e.g. a one-sided test is more
powerful than a two-sided test).

6. Use the most powerful test that the appropriate assumptions will allow. The most
powerful test may sometimes be more difficult, and hence more expensive, to
compute; but with modern computers this is rarely an issue. When computational
cost is an issue, as may be the case in genetic studies investigating hundreds of
thousands of SNPs, it is nevertheless usually cheapest in the long run to use the
most powerful test.

It is also possible to increase power by using an invalid test, but this is never
legitimate!

Finally, remember that if a statistical test shows that a sample difference is
not significant, this does not prove that a population difference does not exist, or
even that any real difference is probably small. Only the power of the test tells
us anything about the probability of rejecting any hypothesis other than the null
hypothesis. Whenever we fail to reject the null hypothesis, a careful consideration
of the power is essential. Furthermore, neither the p-value nor the power can tell
us the probability that the research hypothesis is true. A way of determining this
will be discussed in the next chapter.

SUMMARY

1. The three steps in a significance test are: (1) determine a specific null hypothesis
to be tested; (2) determine an appropriate test criterion, that is, a statistic whose
sampling distribution is known under the null hypothesis; and (3) calculate
the test criterion from the sample data and determine the corresponding
significance level.



SIGNIFICANCE TESTS AND TESTS OF HYPOTHESES 177

2. A hypothesis test differs from a significance test in that it entails predeter-
mining a particular significance level to be used as a cutoff. If the p-value is
larger than this significance level, the null hypothesis is accepted; otherwise it is
rejected.

3. The p-value is the probability of observing what we actually did observe,
or anything more extreme, if the null hypothesis is true. The result is sig-
nificant at any level larger than or equal to p, but not significant at any
level less than p. This is statistical significance, as opposed to biological
significance.

4. In a one-sided (one-tail) test, results that are more extreme in one direction
only are included in the evaluation of p. In a two-sided test, results that are more
extreme in both directions are included. Thus, to attain a specified significance
level, the test statistic need be less ‘atypical’ for a one-sided test than for a
two-sided test.

5. Hypotheses about a proportion or percentile can be tested using the bino-
mial distribution. For large samples, an observed proportion is about normally
distributed with mean � and standard deviation

√
�(1 − �)/n.

6. To test the equality of two variances we use the F-statistic: the ratio of the two
sample variances. The number of degrees of freedom in the top of the ratio
corresponds to that along the top of the F-table, and the number in the bottom
corresponds to that along the side of the table. For a two-sided test, the larger
sample variance is put at the top of the ratio and the tail probability indicated
by the table is doubled. The F-statistic is very sensitive to non-normality.

7. If we have normal distributions, the t-distribution can be used to test for the
equality of two means. If we have two independent samples of sizes n1 and n2

from populations with the same variance, we use the two-sample t-test after
estimating a pooled variance with n1 + n2 − 2 degrees of freedom. If we have a
sample of n correlated pairs of observations, we use the n differences as a basis
for the paired t-test, with n − 1 degrees of freedom.

8. If we have two populations with similarly shaped distributions, the rank sum
test can be used to test the equality of the two medians when we have two
independent samples, and the signed rank sum test when we have paired data.
The sign test can also be used for paired data without making any assumption
about the underlying distributions. The two-sample t-test, the rank sum test
and the sign test are all based on statistics that, when standardized, are about
normally distributed in large samples even when the assumptions they require
about population are questionable.
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9. A valid test is one for which the stated probability of the type 1 error (�)
is correct: when the null hypothesis is true, it leads to rejection of the null
hypothesis with probability �. A powerful test is one for which the probability
of type II error (i.e. the probability of accepting the null hypothesis when it is
false, �) is low.

10. The more assumptions that can be made, the more powerful a test can be.
A one-sided test is more powerful than a two-sided test. The power of a stat-
istical test can also be increased by using a larger significance level, a larger
sample size, or by deciding to try to detect a larger difference; it is decreased by
greater variability, whether due to measurement error or heterogeneity of study
units.

FURTHER READING

Altman D.G. (1980) Statistics and ethics in medical research: III. How large a sample?
British Medical Journal 281: 1336–1338. (This article contains a nomogram, for a two-
sample t-test with equal numbers in each sample, relating power, total study size, the
standardized mean difference, and the significance level. Given any three of these
quantities, the fourth can be read off the nomogram.)

Blackwelder W.C. (1982) ‘Proving the null hypothesis’ in clinical trials. Controlled Clinical
Trials 3: 345–353. (This article shows how to set up the statistical null hypothesis in
a situation in which the research hypothesis of interest is that two different therapies
are equivalent.)

Browner, W.S., and Newman, T.B. (1987) Are all significant p-values created equal? Journal
of the American Medical Association 257: 2459–2463. (This article develops in detail
the analogy between diagnostic tests and tests of hypotheses.)

PROBLEMS

1. Significance testing and significance levels are important in the develop-
ment of science because

A. they allow one to prove a hypothesis is false
B. they provide the most powerful method of testing hypotheses
C. they allow one to quantify one’s belief in a particular hypothesis other

than the null hypothesis
D. they allow one to quantify how unlikely a sample result is if the null

hypothesis is false
E. they allow one to quantify how unlikely a sample result is if the null

hypothesis is true
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2. A one-sided test to determine the significance level is particularly relevant
for situations in which

A. we have paired observations
B. we know a priori the direction of any true difference
C. only one sample is involved
D. we have normally distributed random variables
E. we are comparing just two samples

3. If a one-sided test indicates that the null hypothesis can be rejected at the
5% level, then

A. the one-sided test is necessarily significant at the 1% level
B. a two-sided test on the same set of data is necessarily significant at the

5% level
C. a two-sided test on the same set of data cannot be significant at the

5% level
D. a two-sided test on the same set of data is necessarily significant at the

10% level
E. the one-sided test cannot be significant at the 1% level

4. A researcher conducts a clinical trial to study the effectiveness of a new
treatment in lowering blood pressure and concludes that ‘the lowering of
mean blood pressure in the treatment group was significantly greater than
that in the group on placebo (p < 0.01)’, This means that

A. if the treatment has no effect, the probability of the treatment group
having a lowering in mean blood pressure as great as or greater than
that observed is exactly 1%

B. if the treatment has no effect, the probability of the treatment group
having a lowering in mean blood pressure as great as or greater than
that observed is less than 1%

C. there is exactly a 99% probability that the treatment lowers blood
pressure

D. there is at least a 99% probability that the treatment lowers blood
pressure

E. none of the above

5. A surgeon claims that at least three-quarters of his operations for gast-
ric resection are successes. He consults a statistician and together
they decide to conduct an experiment involving 10 patients. Assuming
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the binomial distribution is appropriate, the following probabilities are of
interest:

Number of successes Probability of success with p = 3/4

0 0.0000
1 0.0000
2 0.0004
3 0.0031
4 0.0162
5 0.0582
6 0.1460
7 0.2503
8 0.2816
9 0.1877

10 0.0563

Suppose 4 of the 10 operations are successes. Which of the following
conclusions is best?

A. The claim should be doubted, since the probability of observing 4 or
fewer successes with p = 3/4 is 0.0197.

B. The claim should not be doubted, since the probability of observing 4
or more successes is 0.965.

C. The claim should be doubted only if 10 successes are observed.
D. The claim should be doubted only if no successes are observed.
E. None of the above.

6. ‘The difference is significant at the 1% level’ implies

A. there is a 99% probability that there is a real difference
B. there is at most a 99% probability of something as or more extreme

than the observed result occurring if, in fact, the difference is zero
C. the difference is significant at the 5% level
D. the difference is significant at the 0.1% level
E. there is at most a 10% probability of a real difference

7. The p-value is

A. the probability of the null hypothesis being true
B. the probability of the null hypothesis being false
C. the probability of the test statistic or any more extreme result assuming

the null hypothesis is true
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D. the probability of the test statistic or any more extreme result assuming
the null hypothesis is false

E. none of the above

8. A clinical trial is conducted to compare the efficacy of two treatments,
A and B. The difference between the mean effects of the two treatments
is not statistically significant.This failure to reject the null hypothesis could
be because of all the following except

A. the sample size is large
B. the power of the statistical test is small
C. the difference between the therapies is small
D. the common variance is large
E. the probability of making a type II error is large

9. An investigator compared two weight-reducing agents and found the
following results:

Drug A Drug B

Mean weight loss 10 lb. 5 lb
Standard deviation 2 lb. 1 lb
Sample size 16 16

Using a t -test, the p-value for testing the null hypothesis that the average
reduction in weight was the same in the two groups was less than 0.001.
An appropriate conclusion is

A. the sample sizes should have been larger
B. an F -test is called for
C. drug A appears to be more effective
D. drug B appears to be more effective
E. the difference between the drugs is not statistically significant

10. An investigator wishes to test the equality of the means of two random
variables Y1 and Y2 based on a sample of matched pairs. It is known that
the distribution of Y1 is not normal but has the same shape as that of Y2.
Based on this information, the most appropriate test statistic in terms of
validity and power is the

A. paired t -test
B. Wilcoxon signed rank test
C. sign test
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D. F -test
E. one-sided test

11. A lipid laboratory claimed it could determine serum cholesterol levels with
a standard deviation no greater than that of a second laboratory. Samples
of blood were taken from a series of patients. The blood was pooled, thor-
oughly mixed, and divided into aliquots. Twenty of these aliquots were
labeled with fictitious names and ten sent to each laboratory for routine lipid
analysis, interspersed with blood samples from other patients. Thus, the
cholesterol determinations for these aliquots should have been identical,
except for laboratory error. On examination of the data, the estimated
standard deviations for the 10 aliquots were found to be 11 and 7 mg/dl
for the first and second laboratories, respectively. Assuming cholesterol
levels are approximately normally distributed, an F -test was performed of
the null hypothesis that the standard deviation is the same in the two labor-
atories; it was found that F =1.57 with 9 and 9 d.f. (p <0.25). An appropriate
conclusion is

A. the data are consistent with the laboratory’s claim
B. the data suggest the laboratory’s claim is not valid
C. rather than an F -test, a t -test is needed to evaluate the claim
D. the data fail to shed light on the validity of the claim
E. a clinical trial would be more appropriate for evaluating the claim

12. A type II error is

A. the probability that the null hypothesis is true
B. the probability that the null hypothesis is false
C. made if the null hypothesis is accepted when it is false
D. made if the null hypothesis is rejected when it is true
E. none of the above

13. We often make assumptions about data in order to justify the use of a
specific statistical test procedure. If we say a test is robust to certain
assumptions, we mean that it

A. generates p-values having the desirable property of minimum variance
B. depends on the assumptions only through unbiased estimators
C. produces approximately valid results even if the assumptions are not

true
D. is good only when the sample size exceeds 30
E. minimizes the chance of type II errors
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14. The power of a statistical test

A. should be investigated whenever a significant result is obtained
B. is a measure of significance
C. increases with the variance of the population
D. depends upon the sample size
E. should always be minimized

15. An investigator wishes to compare the ability of two competing statistical
tests to declare a mean difference of 15 units statistically significant. The
first test has probability 0.9 and the second test has probability 0.8 of being
significant if the mean difference is in fact 15 units. It should be concluded
for this purpose that

A. the first test is more powerful than the second
B. the first test is more robust than the second
C. the first test is more skewed than the second
D. the first test is more uniform than the second
E. the first test is more error prone than the second
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likelihood
likelihood ratio
nuisance parameter
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commingling analysis
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posterior probability of type II error
false discovery rate
posterior odds

prior odds
Bayes factor
noninformative
Bayes estimate
credible interval
posterior distribution
experimentwise type I error
familywise type I error
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empirical Bayes





Likelihood Ratios, Bayesian
Methods and Multiple

Hypotheses

SYMBOLS AND ABBREVIATIONS
H0 Null hypothesis
�1, �2 Means
�2 Variance
� Admixture proportion
LR Likelihood ratio

LIKELIHOOD RATIOS

In Chapter 6 we introduced maximum likelihood estimators as a type of estimator
with many good properties. Since different statistical tests compete with each other
in much the same way that different estimators do, it would be helpful to have a
general approach to deriving statistical tests that have desirable properties. One
such approach is to use what is known as the likelihood ratio criterion.

Recall that we ended Chapter 4 by calling the ratio of two conditional probabil-
ities a likelihood ratio. In that instance, we were discussing the probability of a child
receiving a B allele conditional on the child’s father being a man accused of being
the father, relative to the probability of the same event conditional on the child’s
father being a random man from a particular population. We can think of these two
possibilities as two different hypotheses. In general, the likelihood ratio is simply
the likelihood of one hypothesis relative to another, for an observed set of data. This
is calculated as the probability of the data given the one hypothesis, often defined
by a particular value of a parameter, divided by the probability of the same data
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given the second, competing hypothesis – that is, a competing value of the para-
meter. (Recall that we often state hypotheses as contentions about parameters.) In
Chapter 6 we defined the maximum likelihood estimate of a parameter as the value
of the parameter that makes ‘the probability, or likelihood, of our sample as large
as possible’. It is now time to make a subtle distinction between the probability of
a particular sample and its likelihood. We use the word ‘likelihood’ when we want
to stress that we are interested in different values of the parameters, keeping the
values of the random variables fixed at the values observed in a particular sample.
We use the word ‘probability’, on the other hand, when we want to stress that we
are interested in different values of the random variable, keeping the values of the
parameters fixed at the population values. Thus the expression for P(y males) on
page 136 is both the probability of, and the likelihood for, the sample value y, which
term we use merely indicating whether we want to consider it as a mathematical
function of y or of �. Depending on which we consider fixed, the parameters or the
data, we talk of the probability distribution of random variables, given the values of
one or more parameters, but the likelihood distribution of one or more parameters,
given a specific set of data. In this context, likelihoods are functions of one or more
parameters that for estimation purposes are viewed as variables having domains
(ranges of values the parameters are allowed to have) that may be restricted by
hypotheses.

To a certain extent, likelihoods can be manipulated just like probabilities.
Analogous to conditional and joint probabilities, we can have conditional and joint
likelihoods. Like probabilities, likelihoods must be positive. Unlike probabilities,
however, likelihoods need not be less than one, and they do not belong to sets of
values that have to add up to one. We saw that when we are dealing with a continuous
random variable, any particular sample value has (theoretically) zero probability of
occurring. The likelihood for that sample value would in this case be the height
of the corresponding probability density function. Probabilities, as we discussed in
Chapter 4, can be interpreted as relative frequencies. Because they must add up
to one, it is intuitively clear what they mean. Individual likelihoods, on the other
hand do not have any similar meaning. Likelihoods are only meaningful when
compared with one another – in fact, they are only defined as being proportional
to the corresponding probabilities.

To calculate a likelihood ratio, we need to formulate two probabilities (or
the heights of density functions) for the same set of data, corresponding to two
hypotheses – the null, H0, and the research hypothesis – and divide one by the
other. If we multiply each probability (or density) by the same multiplier, that
multiplier cancels out in the ratio. If we multiply a probability by some number,
the probability changes. But if, for a given sample, we multiply the likelihoods of
two different parameter values by the same constant number, there is no change
in the ratio of these two likelihoods. In this sense, when we base all inferences on
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likelihood ratios, any multiple of a likelihood is the same likelihood. The likelihood
ratio criterion is based on such a ratio.

Suppose, as an example, we have two random samples, one from each of two
populations, and we wish to test whether the population means are equal. We
assume that the random variable of interest is normally distributed with the same
variance in the two populations. Under one hypothesis (the null hypothesis, H0), the
two samples come from identical normal distributions (same means and variances);
under the other, alternative, hypothesis they come from two normal distributions
with the same variances but different means. We wish to test H0: �1 =�2, the
means of the two samples are not different. (Of course, we already know that the
two-sample t-test is appropriate for this situation, but we shall nevertheless use this
example to illustrate how the likelihood ratio test works). Under each hypothesis the
likelihood depends on the mean(s) and the variance, which are unknown paramet-
ers. To obtain the likelihood ratio, we formulate a general likelihood and maximize
it twice: once over all possible values of a common mean � and a common variance
�2 (i.e. under H0), and once over all possible values of separate means �1 and �2,
and a common variance �2 (the alternative, research, hypothesis that the means
are different). Notice that we maximize the likelihood to estimate the variance as
well as the one or two means, and the estimate of this variance will be different
in the two maximizations. When we need to estimate one or more parameters not
explicitly involved in the null hypothesis, such as the variance in this example, they
are called nuisance parameters.

By formulating the likelihood on the assumption that the trait is normally dis-
tributed with the same variance in the two populations, the test that the population
means are equal is the two-sample t-test and, hence, has a t-distribution. We stress
that the maximum likelihood estimate of the variance, a nuisance parameter, will be
different in the two maximizations. It is incorrect (as has sometimes been done in
the field of genetic epidemiology) to estimate a nuisance parameter from one of the
two likelihoods and then fix it at that value when maximizing the other likelihood.

Consider as another example testing whether our sample data come from a
single normal distribution versus a mixture of two normal distributions (this is a
special case of what has been called commingling analysis in genetics). In this
example, we have a single population (not two populations) but we believe it may be
a mixture of two subpopulations. Once again we formulate a general likelihood and
maximize it twice, under the null and alternative hypotheses. The general likelihood
assumes that with (unknown) probability � an observation in our data set comes
from a normal distribution with mean �1 and variance �2, and with probability 1−�
it comes from a normal distribution with mean �2 and variance �2. We maximize
this likelihood with and without the restriction �1 = �2 to obtain the likelihood
ratio. Another example that occurs in genetics is to test whether a trait is due
to segregation of a particular allele that is dominant or recessive with respect to
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a specified trait. Here the two likelihoods correspond to two different modes of
inheritance for a particular allele and trait phenotype. Note that if there are two
phenotypes (e.g. affected and unaffected), dominance of an allele with respect to
one of the phenotypes is identical to recessive inheritance with respect to the other
phenotype. We detect a difference in likelihoods only if we specify, for example,
that it is the less frequent allele that corresponds to the phenotype ‘affected’.

Under fairly general conditions, which apply to all the cases we have just
described, it can be proved that any statistical test based on the likelihood ratio
is the most powerful. To apply such a test, we need to know the null sampling
distribution, that is, the distribution of this ratio when the null hypothesis is true.
We leave discussion of this to Chapter 9.

BAYESIAN METHODS

The statistical methods for estimation and hypothesis testing that we have described
so far in this book are known as frequentist methods, based on probabilities of
sample data that can be calculated when the parameters are known. In Chapter 7
we defined the significance level � as the probability of making a type I error, the
probability of making an error when H0 is true. We also defined the power 1 − �
as the probability of not making a type II error, the probability of rejecting the null
hypothesis when in fact it is false. But what most investigators really want to know,
after performing a statistical test, is the probability that H0 is true or equivalently the
probability that it is false. These two probabilities are equivalent in the sense that
once we know one we know the other, because the two probabilities must add up
to 1. Suppose we could assign to the letters a, b, c and d in the following 2 × 2 table
numbers that represent the frequency with which each possibility actually occurs:

True state of nature
H0 is true H0 is false

Decision made Accept H0 a b
Reject H0 c d

Then �, the probability of making a type I error, is equal to c/(a + c), and �,
the probability of making a type II error, is equal to b/(b + d). These probabilities
should be contrasted with the probabilities b/(a + b) and c/(c + d), which are of
more scientific interest. If we knew them, we would also know their complements,
a/(a + b) and d/(c + d), the probabilities of making the right decision, The error
probabilities b/(a + b) and c/(c + d) are sometimes called the posterior probabilit-
ies of type II and type I error, respectively. The posterior probability of type I error
is also called the false discovery rate – the probability of identifying false research
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hypotheses as being true (but the term ‘false discovery rate’ is often used for a par-
ticular method of calculating a quantity that could be larger than the true posterior
probability of type I error). Why, you may ask, if these posterior error probabilities
are the real probabilities we should be controlling, is this ignored by the frequentist
methods? The answer lies in the fact that they depend on information that is usu-
ally unknown; but sometimes – especially in genetics – the required information is
known. We need to know, prior to any data collection, the probability that H0 is true
(or false). With that information, we can use Bayes’ theorem to obtain the answers
we want.

Recall that in case 2 of the paternity example in Chapter 4, we used Bayes’
theorem with S denoting the result of the paternity test (the child received a B
allele from the true father), D1 being the event that the alleged father is the true
father, and D2 the event that a random man from a specified population is the true
father. Think of D2 as H0 and D1 as the alternative hypothesis – H0 is false and so the
research hypothesis is true. In the paternity example, we assumed we knew the prior
probabilities, before the paternity test was performed, that the accused father is the
true father or not: P(D1)=0.65, P(D2)=0.35. We also calculated P(S|D1)=0.5 and
P(S|D2)=0.06, with the result that the eventual (posterior) probability of paternity
was found to be P(D1|S) = 0.94. Now rewrite the equation we had before,

P(D1|S) = 0.65 × 0.5
0.65 × 0.5 + 0.35 × 0.06

= 0.94.

as

P(H0 is false | the data) = P(H0 false)P(the data | H0 false)

P(H0 false)P(H0 is false | the data) + P(H0 true)P(the data | H0 true)
.

Because P(H0 is false | the data) is the same as P(the research hypothesis is true |
the data), this gives the researcher exactly what is wanted, once the data have been
collected and analyzed.

With algebraic manipulation, as shown in the Appendix, this can be written:

posterior odds of the research hypothesis = prior odds of the research

hypothesis × LR,

where ‘posterior’ refers to probabilities after the data have been collected, ‘prior’
refers to probabilities before any data are collected, and LR is the likelihood ratio,
defined as

LR = P(the data |H0 is false)

P(the data |H0 is true)
.
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Thus, to answer the question that is often of most interest (i.e. now that I have
obtained a result, what is the probability that H0 is false?), we need to know, before
seeing the results of the study, the relative prior probabilities P(H0 is false) and
P(H0 is true). Note that if we assume that the null hypothesis H0 and the research
hypothesis have equal prior probabilities, the prior odds of the event ‘H0 is false’
(the research hypothesis is true) will equal 1, and then the posterior odds is the
same as the likelihood ratio.

When we test a hypothesis, which is the frequentist approach, the more plaus-
ible the research hypothesis is before we conduct the study, the less stringent the
test need be before we reject H0. If the research hypothesis has low prior probability
of being true, then the study should be required to attain high statistical significance
(i.e. a very small p-value) before any confidence is placed in it; if it has relatively
high prior probability of being true, less significance (a larger p-value) could suffice.
If we use Bayesian methods, on the other hand, the choice of an appropriate signi-
ficance level is bypassed in favor of determining the relative probabilities of the two
hypotheses using both the data and all the prior information available. We simply
assign probabilities to hypotheses and parameters, making no essential distinction
between random variables and parameters in this regard. The end result is that
we can derive probabilities for the hypotheses of interest and, instead of testing
hypotheses, we summarize the evidence for or against a research hypothesis as a
Bayes factor, Furthermore, estimates are obtained from the posterior distribution
of the parameters and ‘credible intervals’ replace confidence intervals.

BAYES’ FACTORS

In Chapter 4, when we first introduced the likelihood ratio, specifically pointing out
that the paternity index is a likelihood ratio, we stated that this particular likelihood
ratio is also a special case of what is known as a Bayes factor. It is a Bayes factor that
assumes equal prior probabilities that the two competing hypotheses are true, or
noninformative prior probabilities, and in which there are no nuisance parameters.
Bayes factors, just like likelihood ratios, measure the strength of the evidence for
one hypothesis versus another. The essential difference is that the Bayes factor
incorporates any prior knowledge we may have. Table 8.1 suggests how Bayes factors
should be interpreted.

Thus using Bayes factors is very similar to significance testing, where we simply
end up with a p-value, rather than hypothesis testing, where we make a decision
to accept one hypothesis or the other. Unlike p-values, however, we cannot attach
frequentist probabilities to them. But likelihood ratios provide the most powerful
way of testing one hypothesis versus another, without the need of making any
assumptions about their relative prior probabilities.
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Table 8.1 Suggested interpretation of Bayes factors

Bayes factor Strength of the evidence for the research hypothesis

<1 Negative evidence
2 Hardly worth mentioning
6 Substantial

20 Fairly strong
60 Very strong

100 Decisive

If we wish, as a way of hypothesis testing, we can make a firm decision on
the basis of a Bayes factor, such as deciding to reject H0 if it is larger than 20
and to accept it otherwise. But then, to know the power of such a procedure, we
need to determine the null distribution of the Bayes factor. In certain cases, as we
shall see in Chapter 9, we can very easily determine the null distribution of the
likelihood ratio, whereas this is typically always difficult for a Bayes factor. But,
except in the special case that the Bayes factor is identical to a likelihood ratio,
Bayes factors and likelihood ratios are essentially different. In order to calculate
Bayes factors, first we need to have a prior probability for each of the possible
hypotheses. Separately in the numerator and denominator, we must multiply each
of the probabilities in the likelihood ratio by the corresponding prior probability and
add together these products. To take a very simple example, suppose we have just
two discrete hypotheses, that with respect to the phenotype ‘disease’ a particular
allele is either dominant or recessive. Then the Bayes factor in favor of dominant
inheritance would be calculated as

P(dominant inheritance)P(data |dominant inheritance)

P(dominant inheritance)P(data |dominant inheritance) + P(recessive inheritance)P(data |recessive inheritance)
.

Second, not only do Bayes factors require the assumption of prior odds, there is also a
difference in the way they treat nuisance parameters. In likelihood ratios, nuisance
parameters are simply replaced by their maximum likelihood estimates. In the
calculation of Bayes factors, an averaging is performed. When the hypotheses are
stated in terms of parameter values on an interval scale so that they are continuous
(such as in the case of the mean or variance of a distribution), their probabilities are
densities and the calculus operation of integration replaces the summation. This
integration has to be over all possible values the parameters, including any nuisance
parameters, can take on, separately in the numerator and denominator. The net
result of this is that each nuisance parameter is averaged (over its prior distribution)
rather than replaced by a single estimate. These ‘average’ values of the nuisance
parameters tend to be more stable in small samples, and this is an advantage of Bayes
factors. But the averages depend on the prior parameter distributions assumed,
and this a major disadvantage if these distributions are unknown and influence the
result unduly. Whenever Bayes factors are used, it is important to investigate how
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sensitive they are to the parameter distributions assumed. However, if sufficiently
large samples are used, the likelihood ratio calculated from the data alone will be
the overwhelmingly dominating factor in determining a numerical value for the
right-hand side of the equation,

posterior odds of the research hypothesis = prior odds of the research

hypothesis × LR.

Thus asymptotically (if the sample size is infinite), there will be no difference
between Bayes factors and likelihood ratios; and the estimates based on them,
to which we now turn, will be identical.

BAYESIAN ESTIMATES AND CREDIBLE INTERVALS

Just as maximum likelihood estimates are based on the likelihood distribution – we
choose the parameter value that makes this distribution a maximum – so Bayesian
estimates are based on the posterior parameter distribution given the data. We can
choose the parameter value that maximizes this distribution, the modal value, or
base the estimates on any other characteristic of the posterior distribution, such as
its mean or median. But usually we are more interested in estimating an interval
in which the parameter probably lies. For this purpose we choose an interval that
contains a given percentage of the posterior distribution, and this is then called
a credible interval. Figure 7.1 depicts the sampling distribution of a standardized
sample average. If we had not standardized the sample average, Figure 7.1 would
have been similar to Figure 8.1. The percentiles indicated along the x-axis of this
figure are the same as the confidence interval limits calculated in Chapter 7 for
the mean weight of men on a weight-reduction program. Now let us suppose,
as indicated in the legend of Figure 8.1, that what is depicted is the posterior

2.5th percentile

5th percentile 95th percentile

97.5th percentile

165.0 168.6 199.4 203.0184.0

Figure 8.1 Posterior distribution of the mean weight of men on a weight-reduction
program.
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distribution of the mean weight. Then the interval from 165.0 to 203.0, which
now contains 95 % of the posterior distribution of the (unknown parameter) mean
weight, would be a 95% credible interval, and the interval from 168.6 to 199.4,
which contains 90% of the posterior distribution, would be a 90% credible interval.
Credible intervals are analogous to confidence intervals, but their interpretation is
quite different. Go back to Chapter 7 and be sure you understand the meaning of
a confidence interval. Credible intervals give an interval that actually includes the
unknown parameter with a specified probability, which is much more meaningful to
most researchers. But they depend on the prior distributions that were assumed for
all the parameters, and different researchers might disagree on what the appropriate
distributions should be. If the sample size is sufficiently large, however, credible
intervals and confidence intervals will be almost identical.

THE MULTIPLE TESTING PROBLEM

The multiple testing problem, sometimes referred to as the multiple comparisons
problem, occurs whenever we try to interpret the results of multiple hypothesis
tests. It is now, as a consequence of cheaper and cheaper high-throughput molecu-
lar technology, an acute problem in interpreting the results of many genetic studies.
Although it is a general problem whatever statistical method is used, we discuss it
here, in the same chapter as Bayesian methods, because these methods are now
being developed specifically to tackle the enormous number of tests that are cur-
rently being performed with micro-array SNP-chip data. (After this chapter we
shall discuss only standard frequentist statistical methods. Because there is no gen-
eral agreement about what prior distributions should be assumed, more than one
Bayesian method is possible for each of the standard frequentist methods available,
depending on the particular situation to which it is applied).

To understand the multiple testing problem, consider the fact that in the 1970s
just about every disease imaginable was reported to be associated with one or other
HLA allele. This polymorphism had been recently discovered and shown to be
genetically determined by segregation at the HLA system, a set of loci in close
proximity on chromosome 6 that could be investigated as a single locus with many
alleles. It was a simple matter to type a series of random patients with a particular
disease and a series of random controls without disease for, say, 40 alleles; then 40
tests would be performed, testing whether each allele frequency was the same in the
two populations, patients and controls. (For our present purpose it is unimportant to
know the details of the statistical test performed.) Now suppose we validly perform
each test of H0, that the frequencies are the same at a pre-specified significance
level �, and that the 40 tests are independent. Then, if H0 is true, the probability
we would not reject any particular one H0 is 1 − �, and the probability we would
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not reject any of the 40 H0s is (1 − �)40. It follows that the probability of rejecting
at least one of the 40 null hypotheses would be 1 − (1 − �)40. If we put � = 0.05 in
this expression, we find 1 − (1 − α)40 ≈ 1 − 0.12851 ≈ 0.87. In other words, even if
there were no association whatsoever, we had an 87% chance of finding an allele
significantly associated at the 5% level! This explains why so many diseases were
originally reported to be associated with HLA.

Note carefully that each of the 40 tests by itself would be valid, and there would
have been no harm in reporting 40 p-values. The problem arose because only those
associations that were significant were published. Of course, if all 40 results were
reported and, before any replication study was performed, the reader inadvertently
gave special attention to those alleles with p-values less than 0.05, the problem
would still be there. Nowadays it is not difficult to perform hundreds, thousands,
or even hundreds of thousands of tests, with no possibility of reporting all the
p-values – though they can be plotted as points against position along the genome,
with many of the points overlapping and a few, presumably those indicating real
associations, standing out from the rest. So we need to have a way of sorting out
which results are significant at, for example, the 5% level, after ‘adjustment’ for the
number of tests performed. Before the adjustment, the type I error is called the
experimentwise type I error and the p-values are called ‘nominal’. After allowing
for the multiple tests, the type I error is called the familywise type I error and the
p-values are called ‘adjusted’ (the expression ‘familywise’ comes from the fact that a
‘family’ of tests has been performed – it has nothing to do with family data). Phrases
such as ‘adjusted to be genomewide significant at the 5% level’, or ‘genomewide
significance at the 5% level’ are found in the literature.

A common way to adjust nominal p-values for multiple testing is to use what is
known as Bonferroni’s inequality. Suppose, for example, that a sample of patients
with a particular disease is compared with a sample of controls with respect to a
panel of c different HLA antigens. Then, if the reported nominal p-value is p∗,
we simply multiply p∗ by c, that is to say, the Bonferroni-adjusted p-value, which
cannot be smaller than the p-value we want, is c × p∗. If the tests are independent,
we can calculate the adjusted p-value as 1 − (1 − p∗)c (this is known as Šidák’s
method). When p∗ is small, this is only very slightly smaller than c × p∗. If the
tests are not independent, either of these methods is conservative, resulting in an
upper bound for the true familywise p-value. In Chapter 11, when we consider the
analysis of variance, we discuss a way of pooling the data to obtain a more accurate
estimate of the variance while at the same time controlling type I error when
multiple comparisons are made. In Chapter 12 we discuss multivariate methods,
in which multiple outcome responses are measured on each study subject and we
make use of the dependences among the responses to obtain tests that can be
more powerful while at the same time controlling type I error. The gain in power
comes from particular assumptions about the dependencies in the data, and so these
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assumptions must always be carefully scrutinized. In any case, these particular tests
can be performed only if the number of independent study subjects in the sample
is much larger than the number of response outcomes being studied. It is now
not uncommon to study the genetic expression of tens of thousands of loci with a
sample of only a few hundred individuals, or hundreds of thousands of SNPs on a
few hundred or thousand cases and controls. In such situations Bayesian methods
are starting to be used and appear to provide very useful results.

The typical Bayesian approach is to make some assumptions about the relative
probabilities of all the alternative hypotheses and then control the posterior prob-
ability of Type I error. The end result is often quoted as a q-value, the Bayesian
analogue of a p-value. It is in fact possible to estimate an upper bound for this
posterior probability without making the prior assumptions necessary for a fully
Bayesian approach, and this is often the method referred to in the literature as
controlling the false discovery rate. But here we wish to indicate the kinds of
assumptions that are being made – assumptions that, if true, allow us to calcu-
late the actual probability of a particular Bayesian method ending up making a
posterior type I or type II error.

Consider, as one example, determining the difference in genetic expression
between tumor and nontumor cells at 20,000 loci. One might expect no difference
in expression for about half the loci and a flat uniform distribution of differences
for the other half. This is the ‘spike and slab’ model – the spike being a discrete
probability of one half at no difference and the slab being a uniform distribution of
differences for the other half of the loci. As a second example, if one has a million
diallelic SNPs to be compared in a case–control study and we give each person a
score equal to the number of minor alleles he or she has, that score must be 0, 1 or 2
(the minor allele is the allele that has the smaller population frequency). We might
then expect the million case–control differences in scores to be symmetrically dis-
tributed about 0 with a tall spike at 0 (reflecting no case–control difference in the
number of minor alleles a person has), smaller probabilities for score differences of
−1 and +1, and even smaller probabilities for score differences of −2 and +2. Thus
we would assume five prior probabilities that add up to 1 for the five possible score
differences. We might assume this prior distribution can be expressed as a prob-
ability function that depends on only one or two parameters. Any parameters that
determine a prior distribution for the parameters that have to be specified in order
to perform a Bayesian analysis are called hyperparameters. These hyperparameters
are then estimated in addition to the parameters of interest – the tumor–control
mean difference in expression between tumor cells and non-tumor cells of each of
the 20,000 loci in the first example, the mean case–control score difference for each
of the million SNPs in the second example. The hyperparameters are treated as
nuisance parameters in the analysis. In an empirical Bayes analysis, all the paramet-
ers, including the hyperparameters, are estimated by maximum likelihood. The net
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effect of this is that an empirical Bayes analysis is nothing more than a maximum
likelihood analysis that uses a more comprehensive statistical model. We take into
account the fact that we expect some kind of distribution of test results but assume
nothing more than the form of this distribution. We do not need to assume, as in
a true Bayesian analysis, that both random variables and parameters have distribu-
tions. However, because an empirical Bayes analysis is often formulated as though
parameters have distributions, it is rarely recognized as being essentially nothing
more than a maximum likelihood analysis that uses a more comprehensive model
than would normally be used in a frequentist maximum likelihood approach.

SUMMARY

1. The likelihood ratio is the likelihood of one hypothesis relative to another for an
observed set of data. It is calculated as the probability of the data given the one
hypothesis divided by the probability of the same data given the other hypothesis.
It can be proved that under fairly general conditions any statistical test based on
the likelihood ratio is the most powerful.

2. Nuisance parameters are parameters that need to be estimated but are not
explicitly stated as part of the null hypothesis.

3. Bayes factors incorporate prior information. When there are no nuisance para-
meters and the prior probabilities of the two hypotheses are equal (the prior
odds = 1), a Bayes factor is the same as a likelihood ratio.

4. Bayes factors, like likelihood ratios, measure the strength of the evidence for one
hypothesis versus another. The essential difference is that a Bayes factor incor-
porates any prior knowledge we may have. In the calculation of the likelihood
ratio, nuisance parameters are replaced by their maximum likelihood estimates.
In the calculation of Bayes factors, they are averaged over an assumed prior
distribution.

5. Bayesian estimates are based on the posterior parameter distribution given the
data. The intervals obtained from this distribution are called credible intervals.
If the sample size is sufficiently large, credible intervals and confidence intervals
will be almost identical.

6. The probability of identifying a false research hypotheses as being true is the pos-
terior probability of type I error, also called the false discovery rate. A Bayesian
analysis typically controls this error rather than the probability of making an
error when the null hypothesis is true.

7. Whenever we highlight the most significant of multiple hypothesis tests we
encounter the multiple testing, or the multiple comparisons, problem. Nominal
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p-values reflect the experiment-wise type I error, adjusted p-values reflect fam-
ilywise type I error. If c tests are performed, the Bonferroni method multiplies
the nominal p-value p∗ by c; if the tests are independent, the adjusted p-value
is 1 − (1 − p∗)c .

8. Any parameters that determine a prior distribution for the parameters that have
to be specified in order to perform a Bayesian analysis are called hyperpara-
meters. These are estimated in addition to the parameters of interest, being
treated as nuisance parameters in the analysis. In an empirical Bayes analysis,
all the parameters, including the hyperparameters, are estimated by maximum
likelihood.

PROBLEMS

1. In hypothesis testing, the posterior probability of type I error is also called

A. Bonferroni coefficient
B. False discovery rate
C. Odds the hypothesis is false
D. Nuisance estimator
E. Binomial error

2. The paternity index is a likelihood ratio that is also a

A. Dominant phenotype
B. Critical value
C. Nomogram
D. Commingling scale
E. Bayes factor

3. An interval that actually includes the unknown parameter being estimated
with a specified probability is called a

A. Credible interval
B. Empirical interval
C. Hyperbolic interval
D. Confidence interval
E. Nominal interval

4. A maximum likelihood analysis that uses a more comprehensive model
than would be used in a frequentist maximum likelihood approach to
estimation is called a

A. Biased analysis
B. Sensitivity analysis
C. Empirical Bayes analysis



200 BASIC BIOSTATISTICS FOR GENETICISTS AND EPIDEMIOLOGISTS

D. Paternity analysis
E. Spike and slab analysis

5. A researcher investigated a set of 100 SNPs at a gene-locus by typing a
series of random patients with a disease and a series of random controls
without the disease. Then 100 statistical tests were performed to assess
whether the allele frequencies at each SNP are the same in the diseased
and control populations. Suppose the researcher validly performs each test
(of H0 that the frequencies are the same in the two populations) at a pre-
specified level 0.05 and the 100 tests are independent. The probability the
researcher rejects at least one of the 100 tests is

A. 0.05
B. (0.05)100

C. (0.95)100

D. 1 − (0.05)100

E. 1 − (0.95)100

6. In the multiple testing problem, p-values are typically adjusted to provide
a known familywise type I error. If this adjustment is not made, and each
of a series of statistical tests is performed at the 0.05 level, the nominal
p-values may lead to an inflated

A. experimentwise type I error
B. commingling of errors
C. number of falsely accepted hypotheses
D. estimate of bias
E. posterior likelihood ratio

7. In a statistical test that employs a Bayesian approach, the end result is
often quoted as a q-value which is a Bayesian analogue of a

A. Bonferroni adjusted confidence interval
B. paternity index
C. confidence coefficient
D. quotient factor
E. frequentist p-value

8. A Bayes factor that assumes equal prior probabilities and in which there
are no nuisance parameters is a

A. Šidák adjusted p-value
B. biased estimate of relative risk
C. likelihood ratio
D. hypothetical parameter
E. admixture proportion
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The Many Uses of Chi-Square

SYMBOLS AND ABBREVIATIONS
loge logarithm to base e; natural logarithm (‘ln’ on

many calculators)
x2 sample chi-square statistic (also denoted X2,

�2)
χ 2 percentile of the chi-square distribution (also

used to denote the corresponding statistic)

THE CHI-SQUARE DISTRIBUTION

In this chapter we introduce a distribution known as the chi-square distribution,
denoted �2 (� is the Greek letter ‘chi’, pronounced as ‘kite’ without the ‘t’ sound).
This distribution has many important uses, including testing hypotheses about pro-
portions and calculating confidence intervals for variances. Often you will read in the
medical literature that ‘the chi-square test’ was performed, or ‘chi-square analysis’
was used, as though referring to a unique procedure. We shall see in this chapter
that chi-square is not just a single method of analysis, but rather a distribution that
is used in many different statistical procedures.

Suppose a random variable Y is known to have a normal distribution with mean
� and variance �2. We have stated that under these circumstances,

Z = Y − μ

σ

has a standard normal distribution (i.e. a normal distribution with mean zero and
standard deviation one). Now the new random variable obtained by squaring Z,
that is,

Z2 = (Y − μ)2

σ 2
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has a chi-square distribution with one degree of freedom. Only one random variable,
Y, is involved in Z2, and there are no constraints; hence we say Z2 has one degree
of freedom. From now on we shall abbreviate ‘degrees of freedom’ by d.f.: the
distribution of Z2 is chi-square with 1 d.f.

Whereas a normally distributed random variable can take on any value, positive
or negative, a chi-square random variable can only be positive or zero (a squared
number cannot be negative). Recall that about 68% of the distribution of Z (the
standardized normal distribution) lies between −1 and +1; correspondingly, 68% of
the distribution of Z2, the chi-square distribution with 1 d.f., lies between 0 and +1.
The remaining 32% lies between +1 and ∞. Therefore, the graph of �2 with 1 d.f.
is positively skewed, as shown in Figure 9.1.

1 2 3 4 5 6 7 8 9 10 11 12 13 140

1 d.f.

3 d.f.

6 d.f.f (x 
2)

(x 
2)

Figure 9.1 The chi-square distributions with 1,3 and 6 d.f.

Suppose that Y1 and Y2 are independent random variables, each normally
distributed with mean � and variance �2. Then

Z2
1 = (Y1 − μ)2

σ 2

and

Z2
2 = (Y2 − μ)2

σ 2

are each distributed as �2 with 1 d.f. Moreover, Z2
1 + Z2

2 (i.e. the sum of these
two independent, squared standard normal random variables) is distributed as �2



THE MANY USES OF CHI-SQUARE 205

with 2 d.f. More generally, if we have a set of k independent random variables
Y1, Y2, . . . , Yk each normally distributed with mean � and variance �2, then

(Y1 − μ)2

�2
+ (Y2 − μ)2

�2
+ . . .+ (Yk − μ)2

�2

is distributed as �2 with k d.f.
Now consider replacing � by its minimum variance unbiased estimator Y, the

sample mean. Once the sample mean Y is determined, there are k − 1 choices
possible for the values of the Ys. Thus

(Y1 − Y)2

�2
+ (Y2 − Y)2

�2
+ . . .+ (Yk − Y)2

�2

is distributed as �2 with k − 1 d.f.
Figure 9.1 gives examples of what the chi-square distribution looks like. It

is useful to remember that the mean of a chi-square distribution is equal to its
number of degrees of freedom, and that its variance is equal to twice its number of
degrees of freedom. Note also that as the number of degrees of freedom increases,
the distribution becomes less and less skewed; in fact, as the number of degrees of
freedom tends to infinity, the chi-square distribution tends to a normal distribution.

We now discuss some random variables that have approximate chi-square
distributions. Let Y have an arbitrary distribution with mean � and variance �2.
Further, let Y represent the mean of a random sample from the distribution. We
know that for large samples

Z = Y − μ

�Y

is approximately distributed as the standard normal, regardless of the shape of the
distribution of Y. It follows that for large samples

Z2 =
(
Y − μ

)2

σ 2
Y

is approximately distributed as chi-square with 1 d.f., regardless of the shape of the
distribution of Y. Similarly, if we sum k such quantities – each being the square
of a standardized sample mean – then, provided they are independent, the sum is
approximately distributed as chi-square with k d.f.
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Recall, for example, that if y is the outcome of a binomial random variable
with parameters n and �, then in large samples the standardized variable

z = y/n − π√
π(1 − π)/n

= y − nπ√
nπ(1 − π)

can be considered as the outcome of a standard normal random variable. Thus the
square of this, z2, can be considered to come from a chi-square distribution with
1 d.f. Now instead of writing y and n − y for the numbers we observe in the two
categories (e.g. the number affected and the number unaffected), let us write y1 and
y2 so that y1 + y2 = n. Analogously, let us write �1 and �2 so that �l + �2 = 1. Then

z2 =
(
y1 − nπ1

)2

nπ1(1 − π1)
=

(
y1 − nπ1

)2

nπ1
+

(
y2 − nπ2

)2

nπ2
.

(If you wish to follow the steps that show this, see the Appendix.) Now notice that
each of the two terms on the right corresponds to one of the two possible outcomes
for a binomially distributed random variable: yl and n�l are the observed and expec-
ted numbers in the first category (affected), and y2 and n�2 are the observed and
expected numbers in the second category (unaffected). Each term is of the form

(observed − expected)2

expected
.

Adding them together, we obtain a statistic that comes from (approximately, in large
samples) a chi-square distribution with 1 d.f. We shall see how this result can be
generalized to generate many different ‘chi-square statistics,’ often called ‘Pearson
chi-squares’ after the British statistician Karl Pearson (1857–1936).

GOODNESS-OF-FIT TESTS

To illustrate the use of this statistic, consider the offspring of matings in which
one parent is hypercholesterolemic and the other is normocholesterolemic. We
wish to test the hypothesis that children from such matings are observed in the 1:1
ratio of hypercholesterolemic to normocholesterolemic, as expected from matings
of this type if hypercholesterolemia is a rare autosomal dominant trait. Thus, we
observe a set of children from such matings and wish to test the ‘goodness of fit’ of
the data to the hypothesis of autosomal dominant inheritance. A 1:1 ratio implies
probabilities �l = �2 = 0.5 for each category, and this will be our null hypothesis,
H0. Suppose the observed numbers are 87 and 79, so that n = 87 + 79 = 166. The
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expected numbers under H0 are n�l = 166 × 0.5 = 83, and n�2 = 166 × 0.5 = 83.
The chi-square statistic is therefore

x2 = (87 − 83)
2

83
+ (79 − 83)

2

83
= 0.39.

From now on we shall use x2 to denote the observed value of a chi-square stat-
istic. If we had observed the number of children expected under H0 in each
category (i.e. 83), the chi-square statistic, x2, would be zero. Departure from this
in either direction (either too many hypercholesterolemic or too many normocho-
lesterolemic offspring) increases x2. Accordingly, we reject H0 if x2 is large (i.e.
above the 95th percentile of the chi-square distribution with a 1 d.f. for a test
at the 5% significance level). The p-value is the area of the chi-square distribu-
tion above the observed x2, and this automatically allows for departure from H0 in
either direction. The headings of the columns of the chi-square table at the website
http://www.statsoft.com/textbook/sttable.html are 1 – percentile/100, so that the
95th percentiles are in the column headed 0.050. Looking in this column, we see
that the 95th percentile of the chi-square distribution with 1 d.f. is about 3.84. Since
0.39 is less than 3.84, the departure from H0 is not significant at the 5% level. In
fact 0.39 corresponds to p = 0.54, so that the fit to autosomal dominant inheritance
is very good. (Note that 3.84 is the square of 1.96, the 97.5th percentile of the
standard normal distribution. Do you see why?)

This test can easily be generalized to any number of categories. Suppose we
have a sample of n observations, and each observation must fall in one, and only one,
of k possible categories. Denote the numbers that are observed in each category o1,
o2, . . . , ok, and the corresponding numbers that are expected (under a particular
H0) e1, e2, . . . , ek. Then the chi-square statistic is simply

x2 = (o1 − e1)
2

e1
+ (o2 − e2)

2

e2
+ . . .+ (ok − ek)

2

ek

and, under H0, this can be considered as coming from a chi-square distribution with
k − 1 d.f. (Once the total number of observations, n, is fixed, arbitrary numbers can
be placed in only k−1 categories.) Of course, the sample size must be large enough.
The same rule of thumb that we have introduced before can be used to check this:
if each expected value is at least 5, the chi-square approximation is good. The
approximation may still be good (for a test at the 5% significance level) if a few of
the expected values are less than 5, but in that situation it is common practice to
pool two or more of the categories with small expected values.

As an example with three categories, consider the offspring of parents whose
red cells agglutinate when mixed with either anti-M or anti-N sera. If these reactions
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are detecting two alleles at a single locus, then the parents are heterozygous (MN).
Furthermore, the children should be MM (i.e. their red cells agglutinate only with
anti-M) with probability 0.25, MN (like their parents) with probability 0.5, or NN
(i.e. their cells agglutinate only with anti-N) with probability 0.25. Suppose we
test the bloods of 200 children and observe in the three categories: o1 = 42, o2 =
106 and o3 = 52, respectively. To test how well these data fit the hypothesis of
two alleles segregating at a single locus we calculate the appropriate chi-square
statistic, with el = 200 × 0.25 = 50, e2 = 200 × 0.5 = 100, and e3 = 200 × 0.25 = 50.
The computations can be conveniently arranged as in Table 9.1. In this case we
compare 1.72 to the chi-square distribution with 2 (i.e. k − 1 = 3 − 1 = 2) d.f. The
chi-square table shows that the 95th percentile of the distribution is 5.99, and
so the departure from what is expected is not significant at the 5% level. In fact
p = 0.42, and once again the fit is good.

Table 9.1 Computation of the chi-square statistic to test whether the MN
Phenotypes of 200 offspring of MN × MN matings are consistent with a

two-allele, one-locus hypothesis

Hypothesized
Genotype

Number
Observed (o)

Number
Expected (e)

(o − e) Contribution
to x2[(o − e)2/e]

MM 42 50 −8 1.28
MN 106 100 +6 0.36
NN 52 50 +2 0.08
Total 200 200 0 x2 = 1.72

Now let us suppose that the observed numbers in Table 9.1 are a random
sample from the population corresponding to the three genotypes of a diallelic
locus and we wish to test whether the three genotype frequencies differ from
Hardy–Weinberg proportions, that is, from the proportions �2, 2�(1 − �) and
(1 − �)2. If the null hypothesis of Hardy–Weinberg proportions holds, it is found
that the maximum likelihood estimate of � from this sample is the allele frequency
(2×42+106)/400 = 0.475, so the expected values for the three cells are e1 =
200×0.4752 =45.125, e2 =200×2×0.475×0.525=99.75 and e3 =200×0.5252 =
55.125. The calculation then proceeds in exactly the same way as in Table 9.1,
substituting these three values in the column headed (e), and we find x2 = 0.79. In
this case, however, the estimate 0.475 we used to calculate the expected frequencies
was obtained from the data as well as from the null hypothesis (whereas in the
previous example the expected frequencies were determined solely by the null
hypothesis), and this restriction corresponds to one degree of freedom. So in this
case the chi-square has 3 − 1 − 1 = 1 d.f., for which the 95th percentile is 3.84. In
fact, p = 0.38 and the fit to the Hardy–Weinberg proportions is good.



THE MANY USES OF CHI-SQUARE 209

The same kind of test can be used to determine the goodness of fit of a set of
sample data to any distribution. We mentioned in the last chapter that there are
tests to determine if a set of data could reasonably come from a normal distribution,
and this is one such test. Suppose, for example, we wanted to test the goodness of fit
of the serum cholesterol levels in Table 3.2 to a normal distribution. The table gives
the observed numbers in 20 different categories. We obtain the expected numbers
in each category on the basis of the best-fitting normal distribution, substituting
the sample mean and variance for the population values. In this way we have 20
observed numbers and 20 expected numbers, and so can obtain x2 as the sum of 20
components. Because we force the expected number to come from a distribution
with exactly the same mean and variance as in the sample, however, in this case there
are two fewer degrees of freedom. Thus, we would compare x2 to the chi-square
distribution with 20 − 1 − 2 = 17 d.f. Note, however, that in the extreme categories
of Table 3.2 there are some small numbers. If any of these categories have expected
numbers below 5, it might be necessary to pool them with neighboring categories.
The total number of categories, and hence also the number of degrees of freedom,
would then be further reduced.

CONTINGENCY TABLES

Categorical data are often arranged in a table of rows and columns in which the
individual entries are counts. Such a table is called a contingency table. Two cat-
egorical variables are involved, the rows representing the categories of the first
variable and the columns representing the categories of the second variable. Each
cell in the table represents a combination of categories of the two variables. Each
entry in a cell is the number of study units observed in that combination of cat-
egories. Tables 9.2 and 9.3 are each examples of contingency tables with two rows
and two columns (the row and column indicating totals are not counted). We call
these two-way tables. In any two-way table, the hypothesis of interest – and hence
the choice of an appropriate test statistic – is related to the types of variables being
studied. We distinguish between two types of variables: response (sometimes called
dependent) and predictor (or independent) variables. A response variable is one for
which the distribution of study units in the different categories is merely observed
by the investigator. A response variable is also sometimes called a criterion variable
or variate. An independent, or factor, variable is one for which the investigator act-
ively controls the distribution of study units in the different categories. Notice that
we are using the term ‘independent’ with a different meaning from that used in our
discussion of probability. Because it is less confusing to use the terms ‘response’
and ‘predictor’ variables, these are the terms we shall use throughout this book.
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Table 9.2 Medical students classified by class and serum
cholesterol level (above or below 210 mg/dl)

Cholesterol Level

Class Normal High Total

First Year 75 35 110
Fourth Year 95 10 105
Total 170 45 215

Table 9.3 First-year medical students classified by serum
cholesterol level (above or below 210 mg/dl) and serum

triglyceride level (above or below 150 mg/dl)

Triglyceride Level

Cholesterol Level Normal High Total

Normal 60 15 75
High 20 15 35
Total 80 30 110

But you should be aware that the terminology ‘dependent’ and ‘independent’ to
describe these two different types of variables is widely used in the literature.

We shall consider the following two kinds of contingency tables: first, the two-
sample, one-response-variable and one-predictor-variable case, where the rows will
be categories of a predictor variable, and the columns will be categories of a response
variable; and second, the one-sample, two-response-variables case, where the rows
will be categories of one response variable, and the columns will be categories of a
second response variable.

Consider the data in Table 9.2. Ignoring the row and column of totals, this
table has four cells. It is known as a fourfold table, or a 2 × 2 contingency table.
The investigator took one sample of 110 first-year students and a second sample
of 105 fourth-year students; these are two categories of a predictor variable – the
investigator had control over how many first- and fourth-year students were taken.
A blood sample was drawn from each student and analyzed for cholesterol level;
each student was then classified as having normal or high cholesterol level based on
a pre-specified cut-point. These are two categories of a response variable, because
the investigator observed, rather than controlled, how many students fell in each
category. Thus, in this example, student class is a predictor variable and cholesterol
level is a response variable.
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Bearing in mind the way the data were obtained, we can view them as having
the underlying probability structure shown in Table 9.4. Note that the first subscript
of each � indicates the row it is in, and the second indicates the column it is in.
Note also that �11 + �12 = 1 and �21 + �22 = 1.

Table 9.4 Probability structure for the data in Table 9.2

Cholesterol Level

Class Normal High Total

First year �11 �12 1
Fourth year �21 �22 1
Total �11 + �21 �12 + �22 2

Suppose we are interested in testing the null hypothesis H0 that the proportion
of the first-year class with high cholesterol levels is the same as that of the fourth-
year class (i.e. �12 = �22). (If this is true, it follows automatically that �11 = �21 as
well.) Assuming H0 is true, we can estimate the ‘expected’ number in each cell
from the overall proportion of students who have normal or high cholesterol levels
(i.e. from the proportions 170/215 and 45/215, respectively; see the last line of
Table 9.2). In other words, if �11 = �21 (which we shall then call �1), and �12 =
�22 (which we shall then call �2), we can think of the 215 students as forming a
single sample and the probability structure indicated in the ‘Total’ row of Table 9.4
becomes

�1 �2 1
instead of �11 + �21 �12 + �22 2

We estimate �1 by p1 = 170/215 and �2 by p2 = 45/215. Now denote the total
number of first-year students n1 and the total number of fourth year students n2.
Then the expected numbers in each cell of the table are (always using the same
convention for the subscripts – first one indicates the row, second one indicates the
column):

e11 = n1p1 = 110 × 170/215 = 86.98

e12 = n1p2 = 110 × 45/215 = 23.02

e21 = n2p1 = 105 × 170/215 = 83.02

e22 = n2p2 = 105 × 45/215 = 21.98
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Note that the expected number in each cell is the product of the marginal totals
corresponding to that cell, divided by the grand total. The chi-square statistic is
then given by

x2 = (o11 − e11)
2

e11
+ (o12 − e12)

2

e12
+ (o21 − e21)

2

e21
+ (o22 − e22)

2

e22

= (75 − 86.98)
2

86.98
+ (35 − 23.02)

2

23.02
+ (95 − 83.02)

2

83.02
+ (10 − 21.98)2

21.98
= 16.14.

The computations can be conveniently arranged in tabular form, as indicated in
Table 9.5.

Table 9.5 Computation of the chi-square statistic for the data in Table 9.2

Class Cholesterol
Level

Number
Observed (o)

Number
Expected (e)

o − e Contribution
to x2 [(o−e)2/e ]

First year Normal 75 86.98 −11.98 1.65
High 35 23.02 11.98 6.23

Fourth year Normal 95 83.02 11.98 1.73
High 10 21.98 −11.98 6.53

Total 215 215.00 x2 = 16.14

In this case the chi-square statistic equals (about) the square of a single stand-
ardized normal random variable, and so has 1 d.f. Intuitively, we can deduce the
number of degrees of freedom by noting that we used the marginal totals to estim-
ate the expected numbers in each cell, so that we forced the marginal totals of the
expected numbers to equal the marginal totals of the observed numbers. (Check
that this is so.) Now if we fix all the marginal totals, how many of the cells of the
2 × 2 table can be filled in with arbitrary numbers? The answer is only one; once
we fill a single cell of the 2 × 2 table with an arbitrary number, that number and
the marginal totals completely determine the other three entries in the table. Thus,
there is only 1 d.f. Looking up the percentile values of the chi-square distribution
with 1 d.f., we find that 16.14 is beyond the largest value that most tables list; in fact
the 99.9th percentile is 10.83. Since 16.14 is greater than this, the two proportions
are significantly different at the 0.1% level (i.e. p<0.001). In fact, we find here that
p<0.0001. We conclude that the proportion with high cholesterol levels is signi-
ficantly different for first-year and fourth-year students. Equivalently, we conclude
that the distribution of cholesterol levels depends on (is associated with) the class
to which a student belongs, or that the two variables student class and cholesterol
level are not independent in the probability sense.
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Now consider the data given in Table 9.3. Here we have a single sample of
110 first-year medical students and we have observed whether each student is
high or normal, with respect to specified cut-points, for two response variables:
cholesterol level and triglyceride level. These data can be viewed as having the
underlying probability structure shown in Table 9.6, which should be contrasted
with Table 9.4. Notice that dots are used in the marginal totals of Table 9.6 (e.g.
�1. = �11 + �12), so that a dot replacing a subscript indicates that the � is the sum
of the �s with different values of that subscript.

Table 9.6 Probability structure for the data in Table 9.3

Triglyceride Level

Cholesterol Level Normal High Total

Normal �11 �12 �1.

High �21 �22 �2.

Total �.1 �.2 1

Suppose we are interested in testing the null hypothesis H0 that triglyceride
level is not associated with cholesterol level (i.e. triglyceride level is independent of
cholesterol level in a probability sense). Recalling the definition of independence
from Chapter 4, we can state H0 as being equivalent to

�11 = �1.�.1

�12 = �1.�.2

�21 = �2.�.1

�22 = �2.�.2

Assuming H0 is true, we can once again estimate the expected number in each cell
of the table. We first estimate the marginal proportions of the table. Using the letter
p to denote an estimate of the probability, these are

p1. = 75
110

,

p2. = 35
110

,

p.1 = 80
110

,

p.2 = 30
110

.
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Then each cell probability is estimated as a product of the two corresponding
marginal probabilities (because if H0 is true we have independence). Thus, letting
n denote the total sample size, under H0 the expected numbers are calculated to be

e11 = np1.p.1 = 110 × 75
110

× 80
110

= 54.55,

e12 = np1.p.2 = 110 × 75
110

× 30
110

= 20.45,

e21 = np2.p.1 = 110 × 35
110

× 80
110

= 25.45,

e22 = np2.p.2 = 110 × 35
110

⊗ 30
110

= 9.55.

Note that after canceling out 110, each expected number is once again the product
of the two corresponding marginal totals divided by the grand total. Thus, we can
calculate the chi-square statistic in exactly the same manner as before, and once
again the resulting chi-square has 1 d.f. Table 9.7 summarizes the calculations. The
calculated value, 6.29, lies between the 97.5th and 99th percentiles (5.02 and 6.63,
respectively) of the chi-square distribution with 1 d.f. In fact, p ∼= 0.012. We there-
fore conclude that triglyceride levels and cholesterol levels are not independent
but are associated (p ∼= 0.012).

Table 9.7 Computation of the chi-square statistic for the data in Table 9.3

Cholesterol
Level

Triglyceride
Level

Number
Observed (o)

Number
Expected (e)

o − e Contribution
to x2 [(o− e)2/e]

Normal Normal 60 54.55 +5.45 0.54
High 15 20.45 −5.45 1.45

High Normal 20 25.45 +5.45 1.17
High 15 9.55 +5.45 3.11

Total 110 110.00 x2 = 6.27

Suppose now that we ask a different question, again to be answered using the
data in Table 9.3: Is the proportion of students with high cholesterol levels different
from the proportion with high triglyceride levels? In other words, we ask whether
the two dependent variables, dichotomized, follow the same binomial distribution.
Our null hypothesis H0 is that the two proportions are the same,

�21 + �22 = �12 + �22,

which is equivalent to �21 = �12.
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A total of 20 + 15 = 35 students are in the two corresponding cells, and under
H0 the expected number in each would be half this,

e12 = e21 = 1
2

(o12 + o21) = 35
2

= 17.5.

The appropriate chi-square statistic to test this hypothesis is thus

x2 = (o12 − e12)
2

e12
+ (o21 − e21)

2

e21
= (20 − 17.5)

2

17.5
+ (15 − 17.5)

2

17.5
= 0.71.

The numbers in the other two cells of the table are not relevant to the ques-
tion asked, and so the chi-square statistic for this situation is formally the same
as the one we calculated earlier to test for Mendelian proportions among off-
spring of one hypercholesterolemic and one normocholesterolemic parent. Once
again it has 1 d.f. and there is no significant difference at the 5% level (in fact,
p = 0.4).

Regardless of whether or not it would make any sense, we cannot apply the
probability structure in Table 9.6 to the data in Table 9.2 and analogously ask
whether �.1 and �1. are equal (i.e. is the proportion of fourth-year students equal
to the proportion of students with high cholesterol?). The proportion of students
who are fourth-year cannot be estimated from the data in Table 9.2, because we
were told that the investigator took a sample of 110 first-year students and a sample
of 105 fourth-year students. The investigator had complete control over how many
students in each class came to be sampled, regardless of how many there happened
to be. If, on the other hand, we had been told that a random sample of all first-
and fourth-year students had been taken, and it was then observed that the sample
contained 110 first-year and 105 fourth-year students, then student class would be
a response variable and we could test the null hypothesis that �.1 and �1. are equal.
You might think that any hypothesis of this nature is somewhat artificial; after all,
whether or not the proportion of students with high cholesterol is equal to the pro-
portion with high triglyceride is merely a reflection of the cut-points used for each
variable. There is, however, a special situation where this kind of question, requir-
ing the test we have just described (which is called McNemar’s test), often occurs.
Suppose we wish to know whether the proportion of men and women with high
cholesterol levels is the same, for which we would naturally define ‘high’ by the same
cut-point in the two genders. One way to do this would be to take two samples – one
of men and one of women – and perform the first test we described for a 2 × 2 con-
tingency table. The situation would be analogous to that summarized in Table 9.2,
the predictor variable being gender rather than class. But cholesterol levels change
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with age. Unless we take the precaution of having the same age distribution in each
sample, any difference that is found could be due to either the age difference or
the gender difference between the two groups. For this reason it would be wise
to take a sample of matched pairs, each pair consisting of a man and a woman of
the same age. If we have n such pairs, we do not have 2n independent individuals,
because of the matching. By considering each pair as a study unit, however, it is
reasonable to suppose that we have n independent study units, with two different
response variables measured on each – the cholesterol level of the woman of the
pair and the cholesterol level of the man of the pair. We would then draw up a table
similar to Table 9.3, but with each pair as a study unit. Thus, corresponding to the
110 medical students, we would have n, the number of pairs; and the two response
variables, instead of cholesterol and triglyceride level, would be cholesterol level in
the woman of each pair and cholesterol level in the man of each pair. To test whether
the proportion with high cholesterol is the same in men and women, we would now
use McNemar’s test, which assumes the probability structure in Table 9.6 and tests
the null hypothesis �21 + �22 = �12 + �22 (i.e. �21 = �12), and so uses the inform-
ation in only those two corresponding cells of the 2 × 2 table that relate to untied
pairs.

There are thus two different ways in which we could conduct a study to answer
the same question: Is cholesterol level independent of gender? Because of the
different ways in which the data are sampled, two different chi-square tests are
necessary: the first is the usual contingency-table chi-square test, which is sensitive
to heterogeneity; the second is McNemar’s test, in which heterogeneity is controlled
by studying matched pairs. In genetics, McNemar’s test is the statistical test under-
lying what is known as the transmission disequilibrium test (TDT). For this test we
determine the genotypes at a marker locus of independently sampled trios compris-
ing a child affected by a particular disease and the child’s two parents. We then build
up a table comparable to Table 9.3, with the underlying probability structure shown
in Table 9.6, but now each pair, instead of being a man and woman matched for age,
are the two alleles of a parent – and these two alleles, one of which is transmitted and
one of which is not transmitted to the affected child, automatically come from the
same population. Supposing there are two alleles at the marker locus, M and N, the
probability structure would be as in Table 9.8; this is the same as Table 9.6, but the
labels are now different. In other words, the TDT tests whether the proportion of
M alleles that are transmitted to an affected child is equal to the proportion that are
not so transmitted, and this test for an association of a disease with a marker allele
does not result in the ‘spurious’ association caused by population heterogeneity we
shall describe later. However, the test does assume Mendelian transmission at the
marker locus – that a parent transmits each of the two alleles possessed at a locus with
probability 0.5.
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Table 9.8 Probability structure for the TDT

Non-transmitted allele

Transmitted allele M N Total

M �11 �12 �1.

N �21 �22 �2.

Total �.1 �.2 1

In general, a two-way contingency table can have any number r of rows and any
number c of columns, and the contingency table chi-square is used to test whether
the row variable is independent of, or associated with, the column variable. The
general procedure is to use the marginal totals to calculate an ‘expected’ number
for each cell, and then to sum the quantities (observed – expected)2/expected for
all r × c cells. Fixing the marginal totals, it is found that (r − l)(c − 1) cells can be
filled in with arbitrary numbers, and so this chi-square has (r − l)(c − 1) degrees of
freedom. When r = c = 2 (the 2 × 2 table), (r − l)(c − 1) = (2 − 1)(2 − 1) = 1. For
the resulting statistic to be distributed as chi-square under H0, we must

(i) have each study unit appearing in only one cell of the table;
(ii) sum the contributions over all the cells, so that all the study units in the sample

are included;
(iii) have in each cell the count of a number of independent events;
(iv) not have small expected values causing large contributions to the chi-square.

Note conditions (iii) and (iv). Suppose our study units are children and these have
been classified according to disease status. If disease status is in any way familial,
then two children in the same family are not independent. Although condition
(iii) would be satisfied if the table contains only one child per family, it would not be
satisfied if sets of brothers and sisters are included in the table. In such a situation the
‘chi-square’ statistic would not be expected to follow a chi-square distribution. With
regard to condition (iv), unless we want accuracy for very small p-values (because,
for example, we want to allow for multiple tests), it is sufficient for the expected
value in each cell to be at least 5. If this is not the case, the chi-square statistic may
be spuriously large and for such a situation it may be necessary to use a test known
as Fisher’s exact test, which we describe in Chapter 12.

Before leaving the subject of contingency tables, a cautionary note is in order
regarding the interpretation of any significant dependence or association that is
found. As stated in Chapter 4, many different causes may underlie the dependence
between two events. Consider, for example, the following fourfold table, in which



218 BASIC BIOSTATISTICS FOR GENETICISTS AND EPIDEMIOLOGISTS

2000 persons are classified as possessing a particular antigen (A+) or not (A−), and
as having a particular disease (D+) or not (D−):

A+ A− Total

D+ 51 59 110
D− 549 1341 1890
Total 600 1400 2000

We see that among those persons who have the antigen, 51/600 = 8.5% have
the disease, whereas among those who do not have the antigen, 59/1400 = 4.2%
have the disease. There is a clear association between the two variables, which is
highly significant (chi-square with 1 d.f. = 14.84, p<0.001). Does this mean that
possession of the antigen predisposes to having the disease? Or that having the
disease predisposes to possession of the antigen? Neither of these interpretations
may be correct, as we shall see.

Consider the following two analogous fourfold tables, one pertaining to 1000
European persons and one pertaining to 1000 African persons:

Europeans Africans

A+ A− Total A+ A− Total

D+ 50 50 100 D+ 1 9 10
D− 450 450 900 D− 99 891 990
Total 500 500 1000 Total 100 900 1000

In neither table is there any association between possession of the antigen and
having the disease. The disease occurs among 10% of the Europeans, whether or
not they possess the antigen; and it occurs among 1% of the Africans, whether or
not they possess the antigen. The antigen is also more prevalent in the European
sample than in the African sample. Because of this, when we add the two samples
together – which results in the original table for all 2000 persons – a significant asso-
ciation is found between possession of the antigen and having the disease. From this
example, we see that an association can be caused merely by mixing samples from
two or more subpopulations, or by sampling from a single heterogeneous popula-
tion. Such an association, because it is of no interest, is often described as spurious.
Populations may be heterogeneous with respect to race, age, gender, or any number
of other factors that could be the cause of an association. A sample should always



THE MANY USES OF CHI-SQUARE 219

be stratified with respect to such factors before performing a chi-square test for
association. Then either the test for association should be performed separately
within each stratum, or an overall statistic used that specifically tests for associ-
ation within the strata. McNemar’s test assumes every pair is a separate stratum
and only tests for association within these strata. An overall test statistic that allows
for more than two levels within each stratum, often referred to in the literature,
is the Cochran–Mantel–Haenszel chi-square. Similarly, a special test is necessary,
the Cochran–Armitage test, to compare allele frequency differences between cases
and controls, even if there is no stratification, if any inbreeding is present in the
population.

INFERENCE ABOUT THE VARIANCE

Let us suppose we have a sample Y1, Y2, . . . , Yn from a normal distribution with
variance �2, and sample mean Y. We have seen that

(
Y1 − Y

)2

�2
+

(
Y2 − Y

)2

�2
+ . . .+

(
Yn − Y

)2

�2

then follows a chi-square distribution with n − 1 degrees of freedom. But this
expression can also be written in the form .

(n − 1)S2

�2

where S2 is the sample variance. Thus, denoting the 2.5th and 97.5th percentiles of
the chi-square distribution with n−1 d.f. as χ 2

2.5 and χ 2
97.5, respectively, we know that

P
(

χ 2
2.5 ≤ (n − 1)S2

�2
≤ χ 2

97.5

)
= 0.95.

This statement can be written in the equivalent form

P
(

(n − 1)S2

χ 2
97.5

≤ σ 2 ≤ (n − 1)S2

χ 2
2.5

)
= 0.95

which gives us a way of obtaining a 95% confidence interval for a variance; all we
need do is substitute the specific numerical value s2 from our sample in place of the
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random variable S2. In other words, we have 95% confidence that the true variance
�2 lies between the two numbers

(n − 1)S2

χ 2
97.5

and
(n − 1)S2

χ 2
2.5

.

For example, suppose we found s2 = 4 with 10 d.f. From the chi-square table we
find, for 10 d.f., that the 2.5th percentile is 3.247 and the 97.5th percentile is 20.483.
The limits of the interval are thus

10 × 4
20.483

= 1.95 and
10 × 4
3.247

= 12.32.

Notice that this interval is quite wide. Typically we require a much larger sample
to estimate a variance or standard deviation than we require to estimate, with the
same degree of precision, a mean.

We can also test hypotheses about a variance. If we wanted to test the
hypothesis �2 = 6 in the above example, we would compute

x2 = 10 × 4
6

= 6.67,

which, if the hypothesis is true, comes from a chi-square distribution with 10 degrees
of freedom. Since 6.67 is between the 70th and 80th percentiles of that distribution
(in fact, p ∼= 0.76), there is no evidence to reject the hypothesis.

We have already discussed the circumstances under which the F-test can be
used to test the hypothesis that two population variances are equal. Although the
details are beyond the scope of this book, you should be aware of the fact that it
is possible to test for the equality of a set of more than two variances, and that at
least one of the tests to do this is based on the chi-square distribution. Remem-
ber, however, that all chi-square procedures for making inferences about variances
depend rather strongly on the assumption of normality; they are quite sensitive to
nonnormality of the underlying variable.

COMBINING P -VALUES

Suppose five investigators have conducted different experiments to test the same
null hypothesis H0 (e.g., that two treatments have the same effect). Suppose further
that the tests of significance of H0 (that the mean response to treatment is the same)
resulted in the p-values p1 = 0.15, p2 = 0.07, p3 = 0.50, p4 = 0.22, and p5 = 0.09.
At first glance you might conclude that there is no significant difference between
the two treatments. There is a way of pooling p-values from separate investigations,
however, to obtain an overall p-value.
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For any arbitrary p-value, if the null hypothesis that gives rise to it is true,
−2 loge p can be considered as coming from the �2 distribution with 2 d.f. (loge
stands for ‘logarithm to base e’ or natural logarithm; it is denoted ln on many
calculators). If there are k independent investigations, the corresponding p-values
will be independent. Thus the sum of k such values,

−2 loge p1 − 2 loge p2 . . . . − 2 loge pk,

can be considered as coming from the �2 distribution with 2k d.f. Hence, in the
above example, we would calculate

−2 loge(0.15) = 3.79
−2 loge(0.07) = 5.32
−2 loge(0.50) = 1.39
−2 loge(0.22) = 3.03
−2 loge(0.09) = 4.82

Total = 18.35

If H0 is true, then 18.35 comes from a �2 distribution with 2k=2×5=10 d.f. From
the chi-square table, we see that for the distribution with 10 d.f., 18.31 corresponds
to p = 0.05. Thus, by pooling the results of all five investigations, we see that the
treatment difference is just significant at the 5% level. It is, of course, necessary
to check that each investigator is in fact testing the same null hypothesis. It is also
important to realize that this approach weights each of the five studies equally in
this example. If some of the studies are very large while others are very small, it
may be unwise to weight them equally when combining their resulting p-values.
It is also important to check that the studies used similar protocols.

LIKELIHOOD RATIO TESTS

In Chapter 8 we stated that the likelihood ratio could be used to obtain the most
powerful test when choosing between two competing hypotheses. In general, the
distribution of the likelihood ratio is unknown. However, the following general the-
orem holds under certain well-defined conditions: as the sample size increases,
2 loge(likelihood ratio), that is, twice the natural logarithm of the likelihood
ratio, tends to be distributed as chi-square if the null hypothesis is true. Here,
as before, the numerator of the ratio is the likelihood of the alternative, or research,
hypothesis and the denominator is the likelihood of the null hypothesis H0, so we
reject H0 if the chi-square value is large. (As originally described, the numerator
was the likelihood of H0 and the denominator was the likelihood of the alternative,
so that the ‘likelihood ratio statistic’ is often defined as minus twice the natural
logarithm of the likelihood ratio). One of the required conditions, in addition to



222 BASIC BIOSTATISTICS FOR GENETICISTS AND EPIDEMIOLOGISTS

large samples, is that the null and alternative hypotheses together define an appro-
priate statistical model, H0 being a special case of that model and the alternative
hypothesis comprising all other possibilities under that model. In other words, H0

must be a special submodel that is nested inside the full model so that the submodel
contains fewer distinct parameters than the full model. Consider again the example
we discussed in Chapter 8 of random samples from two populations, where we wish
to test whether the population means are equal. The statistical model includes the
distribution of the trait (in our example, normal with the same variance in each
population) and all possible values for the two means, �1 and �2. H0 (the submodel
nested within it) is then �1 = �2 and the alternative hypothesis includes all pos-
sible values of �1 and �2 such that �1 �= �2. The likelihood ratio is the likelihood
maximized under the alternative hypothesis divided by the likelihood maximized
under H0. Then, given large samples, we could test if the two population means
are identical by comparing twice this loge (likelihood ratio) with percentiles of a
chi-square distribution. The number of degrees of freedom is equal to the number
of constraints implied by the null hypothesis. In this example, the null hypothesis
is that the two means are equal, �1 = �2, which is a single constraint; so we use
percentiles of the chi-square distribution with1 d.f.

Another way of determining the number of degrees of freedom is to calculate
it as the difference in the number of parameters over which the likelihood is max-
imized in the numerator and the denominator of the ratio. In the above example,
these numbers are respectively 3 (the variance and the two means) and 2 (the vari-
ance and a single mean). Their difference is 1, so there is 1 d.f. If these two ways of
determining the number of degrees of freedom come up with different numbers,
it is a sure sign that the likelihood ratio statistic does not follow a chi-square distri-
bution in large samples. Recall the example we considered in Chapter 8 of testing
the null hypothesis that the data come from a single normal distribution versus the
alternative hypothesis that they come from a mixture of two normal distributions
with different means but the same variance. Here the null hypothesis is �1 = �2,
which is just one constraint, suggesting that we have 1 d.f. But note that under the
full model we estimate four parameters (�1, �2, �2 and �, the probability of coming
from the first distribution), whereas under the null hypothesis we estimate only two
parameters (� and �2). This would suggest we have 4 − 2 = 2 d.f. Because these
two numbers, 1 and 2, are different, we can be sure that the null distribution of the
likelihood ratio statistic is not chi-square – though in this situation it has been found
by simulation studies that, in large samples, the statistic tends towards a chi-square
distribution with 2 d.f. in its upper tail.

One other requirement necessary for the likelihood ratio statistic to follow a
chi-square distribution is that the null hypothesis must not be on a boundary of
the model. Suppose, in the above example of testing the equality of two means
on the basis of two independent samples, that we wish to perform a one-sided test
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with the alternative research hypothesis (submodel) �1 −�2>0. In this case the null
hypothesis �1 −�2 =0 is on the boundary of the full model �1 −�2 ≥0 and the large-
sample distribution of the likelihood ratio statistic is not chi-square. Nevertheless
most of the tests discussed in this book are ‘asymptotically’ (i.e. in indefinitely large
samples) identical to a test based on the likelihood ratio criterion. In those cases in
which it has not been mathematically possible to derive an exact test, this general
test based on a chi-square distribution is often used. Since it is now feasible, with
modern computers, to calculate likelihoods corresponding to very elaborate prob-
ability models, this general approach is becoming more common in the genetic and
epidemiological literature. We shall discuss some further examples in Chapter 12.

SUMMARY

1. Chi-square is a family of distributions used in many statistical procedures. The-
oretically, the chi-square distribution with k d.f. is the distribution of the sum of
k independent random variables, each of which is the square of a standardized
normal random variable.

2. In practice we often sum more than k quantities that are not independent,
but the sum is in fact equivalent to the sum of k independent quantities. The
integer k is then the number of degrees of freedom associated with the chi-
square distribution. In most situations there is an intuitive way of determining
the number of degrees of freedom. When the data are counts, we often sum
quantities of the form (observed – expected)2/expected; the number of degrees
of freedom is then the number of counts that could have been arbitrarily chosen –
with the stipulation that there is no change in the total number of counts or other
specified parameters. Large values of the chi-square statistic indicate departure
from the null hypothesis.

3. A chi-square goodness-of-fit test can be used to test whether a sample of data is
consistent with any specified probability distribution. In the case of continuous
traits, the data are first categorized in the manner used to construct a histogram.
Categories with small expected numbers (less than 5) are usually pooled into
larger categories.

4. In a two-way contingency table, either or both of the row and column variables
may be response variables. One variable may be controlled by the investigator
and is then called an independent factor or predictor variable.

5. The hypothesis of interest determines which chi-square test is performed. Asso-
ciation, or lack of independence between two variables, is tested by the usual
contingency-table chi-square. The expected number in each cell is obtained as
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the product of the corresponding row and column totals divided by the grand
total. The number of degrees of freedom is equal to the product (number of
rows – 1) (number of columns – 1). Each study unit must appear only once
in the table, and each count within a cell must be the count of a number of
independent events.

6. For a 2 × 2 table in which both rows and columns are correlated response vari-
ables (two response variables on the same subjects or the same response variable
measured on each member of individually matched pairs of subjects), McNe-
mar’s test is used to test whether the two variables follow the same binomial
distribution. If the study units are matched pairs (e.g. men and women matched
by age), and each variable is a particular measurement on a specific member of
the pair (e.g. cholesterol level on the man of the pair and cholesterol level on the
woman of the pair), then McNemar’s test is used to test whether the binomial
distribution (low or high cholesterol level) is the same for the two members of
the pair (men and women). This tests whether the specific measurement (choles-
terol level) is independent of the member of the pair (gender). The transmission
disequilibrium test is an example of McNemar’s test used to guard against a
spurious association due to population heterogeneity.

7. The chi-square distribution can be used to construct a confidence interval
for the variance of a normal random variable, or to test that a variance is
equal to a specified quantity. This interval and this test are not robust against
nonnormality.

8. A set of p-values resulting from independent investigations, all testing the same
null hypothesis, can be combined to give an overall test of the null hypothesis.
The sum of k independent quantities, −2 loge p, is compared to the chi-square
distribution with 2k d.f.; a significantly large chi-square suggests that overall the
null hypothesis is not true.

9. The likelihood ratio statistic provides a method of testing a hypothesis in large
samples. Many of the usual statistical tests become identical to a test based on
the likelihood ratio statistic as the sample size becomes infinite. Under certain
well-defined conditions, the likelihood ratio statistic, 2 loge (likelihood ratio),
is approximately distributed as chi-square, the number of degrees of freedom
being equal to the number of constraints implied by the null hypothesis or the
difference in the number of parameters estimated under the null and alternat-
ive hypotheses. Necessary conditions for the large-sample null distribution to
be chi-square are that these two ways of calculating the number of degrees of
freedom result in the same number and that the null hypothesis is nested as a
submodel inside (and not on a boundary of) a more general model that comprises
both the null and alternative hypotheses.
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FURTHER READING

Everitt, B.S. (1991) Analysis of Contingency Tables, 2nd edn. London and New York:
Chapman & Hall. (This is an easy-to-read introduction to the basics for analyzing
categorical data.)

PROBLEMS

1. The chi-square distribution is useful in all the following except

A. testing the equality of two proportions
B. combining a set of three p-values
C. testing for association in a contingency table
D. testing the hypothesis that the variance is equal to a specific value
E. testing the hypothesis that two variances are equal

2. Which of the following is not true of a two-way contingency table?

A. The row variable may be a response variable.
B. The column variable may be a response variable.
C. Both row and column variables may be response variables.
D. Exactly one of the variables may be a predictor variable.
E. Neither the row nor the column variable may be controlled by the

investigator.

3. Blood samples were taken from a sample of 100 medical students and
serum cholesterol levels determined. A histogram suggested the serum
cholesterol levels are approximately normally distributed. A chi-square
goodness-of-fit test for normality yielded χ2 =9.05 with 12 d.f. (p =0.70).
An appropriate conclusion is

A. the data are consistent with the hypothesis that their distribution is
normal

B. the histogram is misleading in situations like this; a Poisson distribution
would be more appropriate

C. the goodness-of-fit test cannot be used for testing normality
D. a scatter diagram should have been used to formulate the hypothesis
E. none of the above

4. Two drugs – an active compound and a placebo – were compared for
their ability to relieve anxiety. Sixty patients were randomly assigned to
one or the other of the two treatments. After 30 days on treatment, the
patients were evaluated in terms of improvement or no improvement.
The study was double-blind. A chi-square test was performed to compare
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the proportions of improved patients, resulting in χ2 = 7.91 with 1 d.f.
(p = 0.005). A larger proportion improved in the active compound group.
An appropriate conclusion is

A. the placebo group was handicapped by the random assignment to
groups

B. an F -test is needed to evaluate the data
C. the data suggest the two treatments are approximately equally

effective in relieving anxiety
D. the data suggest the active compound is more effective than placebo

in relieving anxiety
E. none of the above

5. An investigator is studying the response to treatment for angina. Patients
were randomly assigned to one of two treatments, and each patient’s
response was recorded in one of four categories. An appropriate test for
the hypothesis of equal response patterns for the two treatments is the

A. t -test
B. F -test
C. z -test
D. chi-square test
E. rank sum test

6. For Problem 5, the appropriate number of degrees of freedom is

A. 1
B. 2
C. 3
D. 4
E. 5

7. An investigator is studying the association between dietary and exercise
habits in a group of 300 students. She summarizes the findings as follows:

Dietary

Habits

Exercise

Habits

Number

Observed (O)
Number

Expected (E)
O – E Contribution

to χ2

Poor Poor 23 27.45 −4.45 0.72
Moderate 81 68.85 12.15 2.14
Good 31 38.70 −7.70 1.53

Moderate Poor 15 17.08 −2.08 0.25
Moderate 47 42.84 4.16 0.40
Good 22 24.08 −2.08 0.18
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Good Poor 23 16.47 6.53 2.59
Moderate 25 41.31 −16.31 6.44
Good 33 23.22 9.78 4.12

Total 300 300.00 χ 2 = 18.37

A. The correct number of degrees of freedom is 6.
B. The correct number of degrees of freedom is 8.
C. The chi-square is smaller than expected if there is no association.
D. The data are inconsistent with the hypothesis of no association.
E. The observed numbers tend to agree with those expected.

8. Data to be analyzed are arranged in a contingency table with 4 rows
and 2 columns. The rows are four categories of a factor variable and the
columns are a binomial response variable. The hypothesis of interest is
that the proportion in the first column is the same for all categories of the
factor variable. An appropriate distribution for the test statistic is

A. Poisson
B. standardized normal
C. Student’s t with 7 degrees of freedom
D. F with 2 and 4 degrees of freedom
E. chi-square with 3 degrees of freedom

9. A group of 180 students were interviewed to see how many follow a
prudent diet. They were then given a 90-day series of in-depth lectures,
including clinical evaluations on nutrition and its association with heart
disease and cancer. One year later the students were reinterviewed and
assessed for the type of diet they followed, yielding the following data:

Prudent Diet Prudent Diet at Follow-Up

Initially Yes No Total

Yes 21 17 38
No 37 105 142
Total 58 122 180

McNemar’s test results in χ2 =7.41 with 1 d.f. (p =0.004). An appropriate
conclusion is

A. the study is invalid since randomization was not used
B. the effect of the lectures is confounded with that of the initial weight

of the students
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C. the data suggest the lectures were ineffective
D. the lectures appear to have had an effect
E. none of the above

10. A researcher wishes to analyze data arranged in a 2 × 2 table in which
each subject is classified with respect to each of two binomial variables.
Specifically, the question of interest is whether the two variables follow
the same binomial distribution. A statistical test that is appropriate for the
purpose is

A. McNemar’s test
B. Wilcoxon’s rank sum test
C. independent samples t -test
D. paired t -test
E. Mann–Whitney test

11. A lipid laboratory claimed it could determine serum cholesterol levels
with a standard deviation less than 5 mg/dl. Samples of blood were taken
from a series of patients. The blood was pooled, thoroughly mixed, and
divided into aliquots. Ten of these aliquots were labeled with fictitious
names and sent to the lipid laboratory for routine lipid analysis, inter-
spersed with blood samples from other patients. Thus, the cholesterol
determinations for these aliquots should have been identical except for
laboratory error. On examination of the data, the standard deviation
of the 10 aliquots was found to be 7 mg/dl. Assuming cholesterol
levels are approximately normally distributed, a chi-square test was per-
formed of the null hypothesis that the standard deviation is 5; it was
found that chi-square = 17.64 with 9 d.f. (p = 0.04). An appropriate
conclusion is

A. the data are consistent with the laboratory’s claim
B. the data suggest the laboratory’s claim is not valid
C. rather than the chi-squaretest, a t -test is needed to evaluate the

claim
D. the data fail to shed light on the validity of the claim
E. a clinical trial would be more appropriate for evaluating the claim

12. For which of the following purposes is the chi-square distribution not
appropriate?

A. To test for association in a contingency table.
B. To construct a confidence interval for a variance.
C. To test the equality of two variances.
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D. To test a hypothesis in large samples using the likelihood ratio criterion.
E. To combine p-values from independent tests of the same null hypo-

thesis.

13. In a case–control study, the proportion of cases exposed to a suspected
carcinogen is reported to be not significantly different from the propor-
tion of controls exposed (chi-square with 1 d.f. = 1.33, p = 0.25). A 95%
confidence interval for the odds ratio for these data is reported to be
2.8 ± 1.2. An appropriate conclusion is

A. there is no evidence that the suspected carcinogen is related to the
risk of being a case

B. the reported results are inconsistent, and therefore no conclusion can
be made

C. the p-value is such that the results should be declared statistically
significant

D. we cannot study the effect of the suspected carcinogen in a case–
control study

E. none of the above

14. An investigator performed an experiment to compare two treatments for
a particular disease. He analyzed the results using a t -test and found
p = 0.08. Since he had decided to declare the difference statistically sig-
nificant only if p<0.05, he decided his data were consistent with the null
hypothesis. Several days later he discovered a paper on a similar previous
study which reported p = 0.11. Further review of the literature produced
two additional studies with p-values 0.19 and 0.07. Since the treatment
differences were in the same direction in all four studies, the investigator
computed

χ2 = −2(loge 0.08 + loge 0.11 + loge 0.19 + loge 0.07)

= 18.10 with 8 d.f. (p = 0.013)

An appropriate conclusion is

A. the investigator should not combine p-values from different studies
B. although none of the separate p-values is significant at the 0.05 level,

the combined value is
C. the t -test should be used to combine p-values
D. the combined p-value is not statistically significant
E. the number of p-values combined is insufficient to warrant making a

decision
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15. The likelihood ratio is appealing because under certain conditions
2 loge(likelihood ratio) is known to be distributed as chi-square in large
samples and this gives a criterion for

A. constructing a contingency table
B. determining the degrees of freedom in a t -test
C. narrowing a confidence interval
D. calculating the specificity of a test
E. evaluating the plausibility of a null hypothesis



CHAPTER TEN

Key Concepts

linear regression:
slope
intercept
residual
error sum of squares or
residual sum of squares
sum of squares due to regression
mean squares
error mean squares
regression (coefficient) of x on y

least square
homoscedasticity, heteroscedasticity
linear relationship, covariance,

product-moment correlation, rank
correlation

multiple regression, stepwise regression,
regression diagnostics, multiple
correlation coefficient, partial correlation
coefficient

regression toward the mean





Correlation and Regression

SYMBOLS AND ABBREVIATIONS
b0 sample intercept
b1, b2, . . . sample regression coefficients
MS mean square
r correlation coefficient
R multiple correlation coefficient
R2 proportion of the variability explained by a regression model
sxy sample covariance of X and Y (estimate)
SS sum of squares
ŷ value of y predicted from a regression equation
e estimated error or residual from a regression model
�0 population intercept
�1, �2, . . . population regression coefficients
� error or residual from a regression model (Greek letter epsilon)

SIMPLE LINEAR REGRESSION

In Chapter 9 we discussed categorical data and introduced the notion of response
and predictor variables. We turn now to a discussion of relationships between
response and predictor variables of the continuous type. To explain such a
relationship we often search for mathematical models such as equations for
straight lines, parabolas, or other mathematical functions. The anthropologist
Sir Francis Galton (1822–1911) used the term regression in explaining the rela-
tionship between the heights of fathers and their sons. From a group of 1078
father–son pairs he developed the following model, in which the heights are in
inches:

son’s height = 33.73 + 0.516 (father’s height).

Basic Biostatistics for Geneticists and Epidemiologists: A Practical Approach R. Elston, W. Johnson
c© 2008 John Wiley & Sons, Ltd
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If we substitute 74 inches into this equation for the father’s height, we arrive at about
72 inches for the son’s height (i.e. the son is not as tall as his father). On the other
hand, if we substitute 65 inches for the father’s height, we find the son’s height to
be 67 inches (i.e. the son is taller than his father). Galton concluded that although
tall fathers tend to have tall sons and short fathers tend to have short sons, the
son’s height tends to be closer to the average than his father’s height. Galton called
this ‘regression toward the mean’. Although the techniques for modeling relation-
ships among variables have taken on a much wider meaning, the term ‘regression’
has become entrenched in the statistical literature to describe this modeling. Thus,
nowadays we speak of regression models, regression equations, and regression ana-
lysis without wishing to imply that there is anything ‘regressive’. As we shall see later,
however, the phrase ‘regression toward the mean’ is still used in a sense analogous
to what Galton meant by it.
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Figure 10.1 Graph of the equation y = 3 + 2x

We begin by discussing a relatively simple relationship between two variables,
namely a straight-line relationship. The equation y = 3 + 2x is the equation of the
straight line shown in Figure 10.1. The equation y=2 − 3x is shown in Figure 10.2,
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Figure 10.2 Graph of the equation y = 2 − 3x
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Figure 10.3 Graph of the equation y = 0.5x

and the equation y = 0.5x in Figure 10.3. In general, the equation of a straight line
can be expressed in the form

y = �0 + �1x

where �0 and �1 are specified constants. Any point on this line has an x-coordinate
and a y-coordinate. When x = 0, y = �0; so the parameter �0 is the value of
the y-coordinate where the line crosses the y-axis and is called the intercept. In
Figure 10.1, the intercept is 3, in Figure 10.2 it is 2. When �0 = 0, the line goes
through the origin (Figure 10.3) and the intercept is 0. The parameter �1 is the
slope of the line and measures the amount of change in y per unit increase in x.
When �1 is positive (as in Figures 10.1 and 10.3), the slope is upward and x and
y increase together; when �1 is negative (Figure 10.2), the slope is downward and
y decreases as x increases. When �1 is zero, y is the same (it has value �0) for all
values of x and the line is horizontal (i.e. there is no slope). The parameter �1 is
undefined for vertical lines but approaches infinity as the line approaches a vertical
position.

So far in our discussion we have assumed that the relationship between x and
y is explained exactly by a straight line; if we are given x we can determine y –
and vice versa – for all values of x and y. Now let us assume that the relationship
between the two variables is not exact, because one of the variables is subject to
random measurement errors. Let us call this random variable the response variable
and denote it Y. The other variable x is assumed to be measured without error; it
is under the control of the investigator and we call it the predictor variable. This
terminology is consistent with that of Chapter 9. In practice the predictor variable
will also often be subject to random variability caused by errors of measurement,
but we assume that this variability is negligible relative to that of the response
variable. For example, suppose an investigator is interested in the rate at which a
metabolite is consumed or produced by an enzyme reaction. A reaction mixture
is set up from which aliquots are withdrawn at various intervals of time and the
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concentration of the metabolite in each aliquot is determined. Whereas the time
at which each aliquot is withdrawn can be accurately measured, the metabolite
concentration, being determined by a rather complex assay procedure, is subject
to appreciable measurement error. In this situation, time would be the predictor
variable under the investigator’s control, and metabolite concentration would be
the random response variable.

Since the relationship is not exact, we write

Y = �0 + �1x + �

where �, called the error, is the amount by which the random variable Y, for a
given x, lies above the line (or below the line, if it is negative). This is illustrated in
Figure 10.4. In a practical situation, we would have a sample of pairs of numbers, x1

and y1, x2 and y2, and so on. Then, assuming a straight line is an appropriate model,
we would try to find the line that best fits the data. In other words, we would try to
find estimates b0 and b1 of the parameters �0 and �1, respectively. One approach
that yields estimates with good properties is to take the line that minimizes the sum
of the squared errors (i.e. that makes the sum of the squared vertical deviations
from the fitted line as small as possible). These are called least-squares estimates.
Thus, if we have a sample of pairs, we can denote a particular pair (the ith pair) xi,
yi, so that

yi = �0 + �1xi + �i.
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Figure 10.4 Graph of the regression equation y = 4 + 2x and errors for the points
(x = 2, y = 4), and (x = 6, y = 17).
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The ith error is

�i = yi − �0 − �1xi

as illustrated in Figure 10.4, and its square is

ε2
i = (yi − �0 − �1xi)

2.

Then the least-squares estimates b0 and b1 of �0 and �1 are those estimates of �0

and �1, respectively, that minimize the sum of these squared deviations over all
the sample values. The slope �1 or its least-squares estimate b1) is also called the
regression of y on x, or the regression coefficient of y on x.

Notice that if the line provides a perfect fit to the data (i.e. all the points fall
on the line), then �i = 0 for all i. Moreover, the poorer the fit, the greater the
magnitudes, either positive or negative, of the �i. Now let us define the fitted line
by ŷi = b0 + b1xi, and the estimated error, or residual, by

ei = yi − ŷi = yi − b0 − b1xi.

Then a special property of the line fitted by least squares is that the sum of ei over
the whole sample is zero. If we sum the squared residuals e2

i , we obtain a quantity
called the error sum of squares, or residual sum of squares.

If the line is horizontal (b1 =0), as in Figure 10.5, the residual sum of squares is
equal to the sum of squares about the sample mean. If the line is neither horizontal
nor vertical, we have a situation such as that illustrated in Figure 10.6. The deviation
of the ith observation from the sample mean, yi − y, has been partitioned into two
components: a deviation from the regression line, yi − ŷi = ei, the estimated error or
residual; and a deviation of the regression line from the mean, ŷi − y, which we call
the deviation due to regression (i.e. due to the straight-line model). If we square
each of these three deviations (yi − y, yi − ŷi, and ŷi − y) and separately add them

0 x

y
e1

e2

e3

e4

e5

Figure 10.5 Graph of the regression equation ŷi = b0 + b1xi for the special
case in which bi = 0 and b0 = y, with five residuals depicted.
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Figure 10.6 Graph of the regression equation ŷ = b0 + b1xi showing how the difference
between each yi and the mean ȳ can be decomposed from the line

(yi − ŷi) and a deviation of the line from the mean (ŷi − ȳ).

up over all the sample values, we obtain three sums of squares which satisfy the
following relationship:

total sum of squared deviations from the mean = sum of squared deviations
from the regression model + sum of squared deviations due to, or ‘explained by’,
the regression model.

We often abbreviate this relationship by writing

SST = SSE + SSR

where SST is the total sum of squares about the mean, SSE is the error, or residual,
sum of squares, and SSR is the sum of squares due to regression.

These three sums of squares have n − 1, n − 2, and 1 d.f., respectively. If
we divide the last two sums of squares by their respective degrees of freedom,
we obtain quantities called mean squares: the error, or residual, mean square and
the mean square due to regression. These mean squares are used to test for the
significance of the regression, which in the case of a straight-line model is the
same as testing whether the slope of the straight line is significantly different from
zero. In the example discussed above, we may wish to test whether the metabolite
concentration in the reaction mixture is in fact changing, or whether it is the same
at all the different points in time. Thus we would test the null hypothesis H0: �1 =0.
Denote the error mean square MSE and the mean square due to the straight line
regression model MSR. Then, under H0 and certain conditions that we shall specify,
the ratio

F = MSR

MSE

follows the F-distribution with 1 and n − 2 d.f. (Note: as is always true of an
F-statistic, the first number of degrees of freedom corresponds to the numer-
ator, here MSR, and the second to the denominator, here MSE). As �1 increases
in magnitude, the numerator of the F-ratio will tend to have large values, and as �1
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approaches zero, it will tend toward zero. Thus, large values of F indicate departure
from H0, whether because �1 is greater or less than zero. Thus if the observed value
of F is greater than the 95th percentile of the F-distribution, we reject H0 at the
5% significance level for a two-sided test. Otherwise, there is no significant linear
relationship between Y and x.

The conditions necessary for this test to be valid are the following:

1. For a fixed value of x, the corresponding Y must come from a normal distribution
with mean �0 + �1x.

2. The Ys must be independent.
3. The variance of Y must be the same at each value of x. This is called

homoscedasticity; if the variance changes for different values of x, we have
heteroscedasticity.

Furthermore, under these conditions, the least-squares estimates b0 and b1 are also
the maximum likelihood estimates of �0 and �1.

The quantities b0, b1 and the mean squares can be automatically calculated
on a computer or a pocket calculator. The statistical test is often summarized as
shown in Table 10.1. Note that SST/(n − 1) is the usual estimator of the (total)
variance of Y if we ignore the x-values. The estimator of the variance of Y about
the regression line, however, is MSE, the error mean square or the mean squared
error. It estimates the error, or residual, variance not explained by the model.

Table 10.1 Summary results for testing the hypothesis of zero slope (linear
regression analysis)

Source of
Variability in Y

d.f. Sum of Squares Mean Square F-Ratio

Regression 1 SSR MSR MSR/MSE

Residual (error) n − 2 SSE MSE

Total n − 1 SST

Now b1 is an estimate of �1 and represents a particular value of an estimator
which has a standard error that we shall denote SB1 . Some computer programs and
pocket calculators give these quantities instead of (or in addition to) the quantities
in Table 10.1. Then, under the same conditions, we can test H0: �1 = 0 by using the
statistic

t = b1

sB1

,
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which under H0 comes from Student’s t-distribution with n − 2 d.f. In fact, the
square of this t is identical to the F-ratio defined earlier. So, in the case of simple
linear regression, either an F-test or a t-test can be used to test the hypothesis that
the slope of the regression line is equal to zero.

THE STRAIGHT-LINE RELATIONSHIP WHEN THERE IS
INHERENT VARIABILITY

So far we have assumed that the only source of variability about the regression
line is due to measurement error. But you will find that regression analysis is often
used in the literature in situations in which it is known that the pairs of values
x and y, even if measured without error, do not all lie on a line. The reason for
this is not so much because such an analysis is appropriate, but rather because it
is a relatively simple method of analysis, easily generalized to the case in which
there are multiple predictor variables (as we discuss later in this chapter), and
readily available in many computer packages of statistical programs. For example,
regression analysis might be used to study the relationship between triglyceride
and cholesterol levels even though, however accurately we measure these vari-
ables, a large number of pairs of values will never fall on a straight line, but rather
give rise to a scatter diagram similar to Figure 3.7. Regression analysis is not the
appropriate statistical tool if, in this situation, we want to know how triglyceride
levels and cholesterol levels are related in the population. It is, however, an appro-
priate tool if we wish to develop a prediction equation to estimate one from the
other.

Let us call triglyceride level x and cholesterol level Y. Using the data illustrated
in Figure 3.7, it can be calculated that the estimated regression equation of Y on x is

ŷ = 162.277 + 0.217x

and the residual variance is estimated to be 776 (mg/dl)2. This variance includes
both measurement error and natural variability, so it is better to call it ‘residual’
variance rather than ‘error’ variance. Thus, for a population of persons who all have
a measured triglyceride level equal to x, we estimate that the random variable Y,
measured cholesterol level, has mean 162.277 + 0.217x mg/dl and standard devi-
ation

√
766=27.857 mg/dl. This is the way we use the results of regression analysis

to predict the distribution of cholesterol level (Y) for any particular value of trigly-
ceride level (x). But we must not use the same equation to predict triglyceride level
from cholesterol level. If we solve the equation

ŷ = 162.277 + 0.217x
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for x, we obtain

x = −747.820 + 4.608 ŷ.

This is exactly the same line, the regression of Y on x, although expressed differ-
ently. It is not the regression of the random variable X on y. Such a regression can
be estimated, and for these same data it turns out to be

x̂ = −41.410 + 0.819y

with residual variance 2930 (mg/dl)2. This is the equation that should be used to
predict triglyceride level from cholesterol level. Figure 10.7 is a repeat of Figure 3.7
with these two regression lines superimposed on the data. The regression of Y on
x is obtained by minimizing the sum of the squared vertical deviations (deviations
in Y, that is, parallel to the y-axis) from the straight line and can be used to predict
the distribution of Y for a fixed value of x. The regression of X on y, on the other
hand, is the converse situation: it is obtained by minimizing the sum of the squared
horizontal deviations (deviations in the random variable X, that is, parallel to the
x-axis), and it is the appropriate regression to use if we wish to predict the distri-
bution of X for a fixed (controlled) value of y. In this latter case, X is the response
variable and y the predictor variable.
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Figure 10.7 Scatterplot of serum cholesterol versus triglyceride levels
of 30 medical students with the two estimated regression lines.
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It is clear that these are two different lines. Furthermore, the line that best
describes the single, underlying linear relationship between the two variables falls
somewhere between these two lines. It is beyond the scope of this book to discuss
the various methods available for finding such a line, but you should be aware that
such methods exist, and that they depend on knowing the relative accuracy with
which the two variables X and Y are measured.

CORRELATION

In Chapter 3 we defined variance as a measure of dispersion. The definition applies
to a single random variable. In this section we introduce a more general concept
of variability called covariance. Let us suppose we have a situation in which two
random variables are observed for each study unit in a sample, and we are interested
in measuring the strength of the association between the two random variables in the
population. For example, without trying to estimate the straight-line relationship
itself between cholesterol and triglyceride levels in male medical students, we might
wish to estimate how closely the points in Figure 10.7 fit an underlying straight line.
First we shall see how to estimate the covariance between the two variables.

Covariance is a measure of how two random variables vary together, either in
a sample or in the population, when the values of the two random variables occur
in pairs. To compute the covariance for a sample of values of two random variables,
say X and Y, with sample means x and y, respectively, the following steps are taken:

1. For each pair of values xi and yi, subtract x from xi and y from yi (i.e. compute
the deviations xi − x and yi − y).

2. Find the product of each pair of deviations (i.e. compute (xi − x) × (yi − y)).
3. Sum these products over the whole sample.
4. Divide the sum of these products by one less than the number of pairs in the

sample.

Suppose, for example, we wish to compute the sample covariance for X, Y
from the following data:

i x y

1 10 30
2 20 50
3 30 70
4 40 90
5 50 110
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Note that the sample means are x = 30 and y = 70. We follow the steps outlined
above.

1. Subtract x from xi and y from yi:

i xi − x yi − y

1 10 – 30 = –20 30 – 70 = –40
2 20 – 30 = –10 50 – 70 = –20
3 30 – 30 = 0 70 – 70 = 0
4 40 – 30 = 10 90 – 70 = 20
5 50 – 30 = 20 110 – 70 = 40

2. Find the products

i (xi − x) × (yi − y)

1 –20 × (–40) = 800
2 –10 × (–20) = 200
3 0 × 0 = 0
4 10 × 20 = 200
5 20 × 40 = 800

3. Sum the products: 800 + 200 + 200 + 800 = 2000.
4. Divide by one less than the number of pairs:

sXY = sample covariance = 2000
5 − 1

= 500.

Note in steps 1 and 2 that, if both members of a pair are below their respective
means (as in the case for the first pair, i = 1), the contribution to the covariance
is positive (+800 for the first pair). It is similarly positive when both members of
the pair are above their respective means (+200 and +800 for i = 4 and 5, in the
example). Thus, a positive covariance implies that X and Y tend to covary in such a
manner that when one is either below or above its mean, so is the other. A negative
covariance, on the other hand, would imply a tendency for one to be above its mean
when the other is below its mean, and vice versa.

Now suppose X is measured in pounds and Y in inches. Then the covariance is
in pound-inches, a mixture of units that is difficult to interpret. Recall that a variance
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is measured in squared units and we take the square root of the variance to get back
to the original units. Obviously this does not work for the covariance. Instead, we
divide the covariance by the product of the estimated standard deviation of X and
the estimated standard deviation of Y, which we denote sX and sY, respectively.
The result is a pure, dimensionless number (no units) that is commonly denoted
r and called the correlation coefficient, or Pearson’s product-moment correlation
coefficient,

r = sXY

sXsY
,

where sXY is the sample covariance of X and Y, sX is the sample standard deviation of
X, and sY the sample standard deviation of Y. Thus, in the above example, sX =√

250
and sY = √

1000, so

r = 500√
250

√
1000

= 1.

In this example the correlation coefficient is +1. A scatterplot of the data indicates
that all the points (xi, yi) lie on a straight line with positive slope, as illustrated in
Figure 10.8(a).

If all the points lie on a straight line with negative slope, as in Figure 10.8(b),
the correlation coefficient is −1. These are the most extreme values possible: a cor-
relation can only take on values between −1 and +1. Figures 10.8(a–h) illustrate
a variety of possibilities, and it can be seen that the magnitude of the correlation
measures how close the points are to a straight line. Remember that the correla-
tion coefficient is a dimensionless number, and so does not depend on the units
of measurement. In Figures 10.8(a–h), the scales have been chosen so that the
numerical value of the sample variance of Y is about the same as that of X – you
can see that in each figure the range of Y is the same as the range of X. Now look at
Figures 10.8(i, j). In each case the points appear to be close to a straight line, and you
might therefore think that the correlation coefficient should be large in magnitude.
If the scales are changed to make the range of Y the same as the range of X, how-
ever, Figure 10.8(i) becomes identical to Figure 10.8(g), and Figure 10.8(j) becomes
identical to Figure 10.8(h). Once the scales have been adjusted, it becomes obvi-
ous that the correlation coefficient is near zero in each of these two situations. Of
course, if all the points are on a horizontal line or on a vertical line, it is impossible
to adjust the scales so that the range is numerically the same for both variables.
In such situations, as illustrated in Figures 10.8(k, l), the correlation coefficient is
undefined.
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Figure 10.8 Scatterplots illustrating how the correlation coefficient, r, is a measure of
the linear association between two variables.
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Note that the denominator in the correlation coefficient is the product of
the sample standard deviations, which include both natural variability and meas-
urement errors. Thus (unless the measurement errors in the two variables are
themselves correlated), larger measurement errors automatically decrease the cor-
relation coefficient. A small correlation between two variables can thus be due
either to (1) little linear association between the two variables, or (2) large errors in
their measurement. A correlation close to +1 or −1, on the other hand, implies that
the measurement errors must be small relative to the sample standard deviations,
and that the data points all lie close to a straight line. In fact, there is a close connec-
tion between the correlation coefficient and the estimated slope of the regression
line. The estimated slope of the regression of Y on x is rsY/sX , and the estimated
slope of the regression of X on y is rsX/sY. The correlation coefficient is signific-
antly different from zero if, and only if, the regression coefficients are significantly
different from zero; and such a finding implies a dependency between the two
variables. However, a correlation coefficient of zero does not imply two variables
are independent (see Figure 10.8(h)) and, as we have seen before, a dependency
between two variables does not necessarily imply a causal relationship between
them.

SPEARMAN’S RANK CORRELATION

If we rank the xs from 1 to n (from largest to smallest, or vice versa), and we
rank the ys from 1 to n in the same direction, and then compute the correlation
coefficient between the pairs of ranks, we obtain the so-called rank correlation
coefficient, or Spearman’s rank correlation coefficient. This correlation measures
how closely the points can be fitted by a smooth, monotonic curve (i.e. a curve
that is either always increasing or always decreasing). The rank correlations of the
data in Figures 10.8(e, f) are +1, and −1, respectively. The curve that best fits
the data in Figure 10.8(h), however, is not monotonic; it first increases and then
decreases, and the rank correlation for these data is also approximately 0. Apart from
being a measure of closeness to a monotonic curve, the rank correlation coefficient
is less subject to influence by a few extreme values, and therefore sometimes gives
a more reasonable index of association.

MULTIPLE REGRESSION

We have seen how a straight-line regression model can be fitted to data so that the
variable x ‘explains’ part of the variability in a random variable Y. A natural question
to ask is, if one variable can account for part of the variability in Y, can more of
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the variability be explained by further variables? This leads us to consider models
such as

Y = �0 + �1x1 + �2x2 + . . .+ �qxq + �,

where x1, x2, . . ., xq are q distinct predictor variables. Just as before, we can partition
the total sum of squared deviations from the mean of y as

SST = SSE + SSR,

where SSE is the sum of squared deviations from the regression model and SSR is
the sum of squared deviations due to, or ‘explained by’, the regression model. But
now SSE has n − q − 1 d.f. and SSR has q d.f. Following the same line of reasoning
as used in the case of simple linear regression, we can compute the quantities
indicated in Table 10.2. Thus, F =MSR/MSE with q and n − q − 1 d.f. and provides
a simultaneous test of the hypothesis that all the regression coefficients are equal
to zero,

H0 : �1 = �2 = . . .= �q = 0.

Table 10.2 Summary results for multiple regression

Source of Y d.f. Sum of Mean F
Variability in Y Squares Square

Regression q SSR MSR MSR/MSE

Residual (error) n − q − 1 SSE MSE

Total n − 1 SST

The sum of squares for regression can be further partitioned into q terms, each
with 1 d.f., so that each coefficient can be tested separately. Thus, the results of
a multiple regression analysis with three predictor variables might look something
like Table 10.3. The F-test provides an overall test of whether the coefficients �1,
�2, and �3 are simultaneously zero. The t-tests provide individual tests for each
coefficient separately. These t-tests are to be interpreted only in light of the full
model. Thus, if we drop x2 from the model because the results suggest �2 is not
significantly different from zero, then we can fit a new model, say

Y = β ′
0 + β ′

1x1 + β ′
3x3 + ε,
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Table 10.3 Summary results of regression analysis for the model
Y = �0 + �1x1 + �2x2 + �3x3 + �

Source of Y d.f. Sum of Mean F
Variability in Y Squares Square

Regression model 3 SSR MSR MSR/MSE

Error (residual) n − 4 SSE MSE

Total n − 1

Parameter Estimate Standard Error
of Estimate

t p-Value

�0 b0 sB0 b0/sB0 p0

�1 b1 sB1 b1/sB1 p1

�2 b2 sB2 b2/sB2 p2

�3 b3 sB3 b3/sB3 p3

to make inferences about the coefficients of xl and x3 with x2 removed from the
model. Note in particular that �1 in the full model is not equal to �′

1 in the reduced
model. Similarly,

�3 �= β ′
3.

To study the effect of each predictor variable fully, it is necessary to perform a
regression analysis for every possible combination of the predictor variables. In the
example of Table 10.3, this would entail conducting a regression analysis for each
of the following models:

1. Y regressed on xl

2. Y regressed on x2

3. Y regressed on x3

4. Y regressed on xl and x2

5. Y regressed on xl and x3

6. Y regressed on x2 and x3

7. Y regressed on xl, x2, and x3.

The larger the number of predictor variables, the greater the number of possible
combinations, and so it is often not feasible to perform all possible regression
analyses. For this reason a stepwise approach is often used, though it may not
lead to the best subset of variables to keep in the model. There are two types of
stepwise regression: forward and backward.
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1. Forward stepwise regression first puts into the model the single predictor vari-
able that explains most of the variability in Y, and then successively at each step
inserts the variable that explains most of the remaining (residual) variability in
Y. However, if at any step none of the remaining predictor variables explain
a significant additional amount of variability in Y, at a predetermined level of
significance, the procedure is terminated.

2. Backward stepwise regression includes all the predictor variables in the model
to begin with, and then successively at each step the variable that explains the
least amount of variability in Y (in the presence of the other predictor variables)
is dropped from the model. However, a variable is dropped only if, at a pre-
determined level of significance, its contribution to the variability of Y (in the
presence of the other variables) is not significant.

Whatever method is used to select among a set of predictor variables in order
to arrive at the ‘best’ subset to be included in a regression model, it must always be
remembered that the final result is merely a prediction model, and not necessarily
a model for the causation of variability in the response variable.

Suppose a multiple regression analysis is performed assuming the model

Y = �0 + �1x1 + �2x2 + �3x3 + �

and, based on a sample of n study units, on each of which we have observations
(y, x1, x2, x3), we find

b0 = 40, b1 = 5, b2 = 10, b3 = 7,

as estimates of �0, �2, �2, and �3, respectively. The fitted regression model in this
case is

ŷ = 40 + 5x1 + 10x2 + 7x3.

For each of the n study units we can substitute x1, x2, and x3 into the fitted model to
obtain a value ŷ. Suppose, for example, the observations on one of the study units
were (y, x1, x2, x3) = (99, 4, 2, 3). On substituting the xs into the fitted model, we
obtain

ŷ = 40 + 5 × 4 + 10 × 2 + 7 × 3 = 101.

This procedure provides us with an estimate of the expected value of Y for the
observed set of xs. We actually observed y = 99 for these xs; however, if we had



250 BASIC BIOSTATISTICS FOR GENETICISTS AND EPIDEMIOLOGISTS

observed a second value of Y for these same xs, that value would likely be some
number other than 99. For each set of xs, our model assumes there is a distribution
of ys corresponding to the random variable Y. Thus, ŷ is an estimate of the mean
value of Y for that set of xs, and y − ŷ (99 − 101 = 2, in our example) is the residual.

If we compute y for each of the n sample study units, and then compute the n
residuals y − ŷ, we can examine these residuals to investigate the adequacy of the
model. In particular, we can obtain clues as to whether:

(i) the regression function is linear;
(ii) the residuals have constant variance;

(iii) the residuals are normally distributed;
(iv) the residuals are not independent;
(v) the model fits all but a few observations;

(vi) one or more predictor variables have been omitted from the model.

Methods for investigating model adequacy are called regression diagnostics.
Regression diagnostics play an important role in statistical modeling because it
is so easy to fit models with existing computer programs, whether or not those
models are really appropriate. Use of good regression diagnostics will guard against
blindly accepting misleading models.

Before leaving multiple regression, we should note that a special case involves
fitting polynomial (curvilinear) models to data. We may have measured only one
predictor variable x, but powers of x are also included in the regression model as
separate predictor variables. For example, we may fit such models as the quadratic
model, or parabola,

Y = β ′
0 + β ′

1x + β ′
2x2 + ε

and the cubic model

Y = �0 + �1x + �2x2 + �3x3 + �.

MULTIPLE CORRELATION AND PARTIAL
CORRELATION

Each sample observation yi of the response variable corresponds to a fitted, or
predicted, value ŷi from the regression equation. Let us consider the pairs (yi, ŷi)
as a set of data, and compute the correlation coefficient for these data. The result,
called the multiple correlation coefficient, is denoted R. It is a measure of the
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overall linear association between the response variable Y and the set of predictor
variables x1, x2, . . ., xq in the regression equation. In the special case where q = 1
(i.e. if there is only one predictor variable), the multiple correlation coefficient
R is simply equal to r, the correlation coefficient between X and Y. In general,
R2 equals the ratio SSR/SST, and so measures the proportion of the variability
explained by the regression model. If we fit a model with three predictor variables
and find R2 =0.46, and then fit a model that includes an additional, fourth predictor
variable and find R2 =0.72, we would conclude that the fourth variable accounts for
an additional 26% (0.72 − 0.46) of the variability in Y. The square of the multiple
correlation coefficient, R2, is often reported when regression analyses have been
performed.

The partial correlation coefficient is a measure of the strength of linear asso-
ciation between two variables after controlling for one or more other variables.
Suppose, for example, we are interested in the correlation between serum cho-
lesterol and triglyceride values in a random sample of men aged 20–65. Now it is
known that both cholesterol and triglyceride levels tend to increase with age, so
the mere fact that the sample includes men from a wide age range would tend to
cause the two variables to be correlated in the sample. If we wish to discount this
effect, controlling for age (i.e. determine that part of the correlation that is over and
above the correlation induced by a common age), we would calculate the partial
correlation coefficient, ‘partialing out the effect of’ the variable age. The square of
the partial correlation between the cholesterol and tryglyceride levels would then
be the proportion of the variability in cholesterol level that is accounted for by the
addition of triglyceride to a regression model that already includes age as an pre-
dictor variable. Similarly, it would also equal the proportion of the variability in
triglyceride level that is accounted for by the addition of cholesterol to a regression
model that already includes age as an predictor variable.

REGRESSION TOWARD THE MEAN

We conclude this chapter with a concept that, although it includes in its name the
word ‘regression’ and is indeed related to the original idea behind regression, is
distinct from modeling the distribution of a random variable in terms of one or
more other variables. Consider the three highest triglyceride values among those
listed in Table 3.1 for 30 medical students. They are (in mg/dl) 218, 225, and 287,
with a mean of 243.3. Suppose we were to draw aliquots of blood from these three
students on several subsequent days; should we expect the mean of the subsequent
values to be 243.3? Alternatively, if we took later samples from those students with
the three lowest values (45, 46, and 49), should we expect their average to remain
the same (46.7)? The answer is that we should not: we should expect the mean of the
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highest three to become smaller, and the mean of the lowest three to become larger,
on subsequent determinations. This phenomenon is called regression toward the
mean and occurs whenever we follow up a selected, as opposed to a complete, or
random, sample. To understand why regression toward the mean occurs, think of
each student’s measured triglyceride value as being made up of two parts: a ‘true’
value (i.e. the mean of many, many determinations made on that student) and a
random deviation from that true value; this latter could be due to measurement
error and/or inherent variability in triglyceride value from day to day. When we
select the three students with the highest triglyceride values based on a single
measurement on each student, we tend to pick three that happen to have their
highest random deviations, so that the mean of these three measurements (243.3 in
our example) is most probably an overestimate of the mean of the three students’
‘true’ values. Subsequent measures on these three students are equally likely to have
positive or negative random deviations, so the subsequent mean will be expected to
be the mean of their ‘true’ values, and therefore probably somewhat lower. Similarly,
if we pick the lowest three students in a sample, these single measurements will
usually be underestimates of their true values, because they were probably picked
partly because they happened to have their lowest random deviations when they
were selected. If we were to make subsequent observations on the whole sample of
30 students, however, or on a random sample of them, regression toward the mean
would not be expected to occur.

It is important to distinguish between regression toward the mean and a
treatment effect. If subjects with high cholesterol levels are given a potentially
cholesterol-lowering drug, their mean cholesterol level would be expected to
decrease on follow-up – even if the drug is ineffective – because of regression
toward the mean. This illustrates the importance of having a control group taking a
placebo, with subjects randomly assigned to the two groups. Regression toward the
mean is then expected to occur equally in both groups, so that the true treatment
effect can be estimated by comparing the groups.

Finally, something analogous to regression toward the mean tends to occur
whenever multiple regression is used to select a set of variables that best explains,
or predicts, a response variable. Given a sample of data, when a model is first fitted
to a set of predictor variables all the estimated regression coefficients are unbiased.
But if we now select the most significant predictors and only report these – or
include only these in a new model that is fitted, using the same data set – we have
automatically chosen predictors that best explain the response in this particular
sample and the new estimates will be biased. In other words, we should expect
estimates of these regression coefficients, when estimated from future samples
taken from the same population, to be closer to zero and hence much less significant.
This is one reason why many studies that first report a significant finding cannot be
replicated by later investigators.
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SUMMARY

1. In the equation of a straight line, y = �0 + �1x, �0 is the intercept and �1 is the
slope.

2. In simple linear regression analysis, it is assumed that one variable (Y), the
response variable, is subject to random fluctuations, whereas the other vari-
able (x), the predictor variable, is under the investigator’s control. Minimizing
the sum of the squared deviations of n sample values of Y from a straight
line leads to the least-squares estimates b0 of �0 and b1 of �1, and hence the
prediction line ŷ = b0 + b1x. The sample residuals about this line sum to zero.

3. The total sum of squared deviations from the sample mean y can be partitioned
into two parts – that due to the regression model and that due to error, or the
residual sum of squares. Dividing these by their respective degrees of freedom
gives rise to mean squares.

4. Under certain conditions the estimates b0 and bl are maximum likelihood estim-
ates, and the ratio of the mean squares (that due to regression divided by that
due to residual) can be compared to the F-distribution with 1 and n − 2 d.f.
to test the hypothesis �1 = 0. These conditions are: (a) for a fixed x, Y must be
normally distributed with mean �0 +�1x; (b) the Ys must be independent; and
(c) there must be homoscedasticity – the variance of Y must be the same at
each value of x.

5. It is possible to determine a standard error for b1 and, under the same condi-
tions, b1 divided by its standard error comes from a t-distribution with n − 2
d.f. In this situation, the F-test and the t-test are equivalent tests of the null
hypothesis �1 = 0.

6. The regression of Y on x can be used to predict the distribution of Y for a given
value x, and the regression of X on y can be used to predict the distribution
of X for a given value y. The line that best describes the underlying linear
relationship between X and Y is somewhere between these two lines.

7. Covariance is a measure of how two random variables vary together. When
divided by the product of the variables’ standard deviations, the result is
the (product-moment) correlation, a dimensionless number that measures the
strength of the linear association between the two variables. If all the points lie
on a straight line with positive slope, the correlation is +1; if they all lie on a
straight line with negative slope, the correlation is −1. A nonzero correlation
between two random variables does not necessarily imply a causal relationship
between them. A correlation of 0 implies no straight-line association – but there
may nevertheless be a curvilinear association.
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8. The rank correlation (computed from the ranks of the observations) measures
how closely the data points fit a monotonic curve. The rank correlation is not
greatly influenced by a few outlying values.

9. Multiple regression is used to obtain a prediction equation for a response vari-
able Y from a set of predictor variables x1, x2, . . . . The significance of the
predictor variables can be jointly tested by an F-ratio, or singly tested by
t-statistics. A stepwise analysis is often used to obtain the ‘best subset’ of the
x-variables with which to predict the distribution of Y, but theoretically we can
only be sure of reaching the best subset by examining all possible subsets. The
prediction equation obtained need not reflect any causal relationship between
the response and predictor variables.

10. Regression diagnostics are used to investigate the adequacy of a regression
model in describing a set of data. An examination of the residuals from a
model gives clues as to whether the regression model is adequate, includ-
ing whether the residuals are approximately normally distributed with constant
variance.

11. The square of the multiple correlation coefficient is a measure of the proportion
of the variability in a response variable that can be accounted for by a set of
predictor variables. The partial correlation coefficient between two variables is
a measure of their linear association after allowing for the variables that have
been ‘partialed out’.

12. Whenever we make subsequent measurements on study units that have been
selected for follow-up because they were extreme with respect to the variable
being measured, we can expect regression toward the mean (i.e. study units
with high initial values will tend to have lower values later, and study units with
low initial values will tend to have higher values later). Similarly, if we select
predictor variables that were most significant in the analysis of a particular
sample, we can expect their effects to be closer to zero and less significant in a
subsequent sample.

FURTHER READING

Kleinbaum, D.G., Kupper, L.L., Nizam, A., and Muller, K.E. (2008) Applied Regression and
Other Multivariable Methods, 4th edn. Pacific Grove, CA: Duxbury. (This book covers
many aspects of regression analysis, including computational formulas. It requires only
a limited mathematical background to read.)
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PROBLEMS

1. Suppose two variables under study are temperature in degrees Fahren-
heit (y ) and temperature in degrees Celsius (x ). The ‘regression line’ for
this
situation is

y = 9
5

x + 32.

Assuming there is no error in observing temperature, the correlation
coefficient would be expected to be

A. 9/5

B. 5/9

C. −1
D. +1
E. 0

2. An investigator studies 50 pairs, of unlike-sex twins and reports that the
regression of female birth weight (y ) on male birth weight (x ) is given by
the following equation (all weights in grams):

y = 1221 + 0.403x .

One can conclude from this that

A. the mean weight of twin brothers of girls who weigh 1000 g is
predicted to be 1624 g

B. the mean weight of twin sisters of boys who weigh 1000 g is predicted
to be 1624 g

C. the sample mean weight of the girls is 1221 g
D. the sample mean weight of the boys is 1221 g
E. the sample correlation between girl’s weight and boy’s weight is 0.403

3. In a regression analysis, the residuals of a fitted model can be used to
investigate all the following except

A. the model fits all but a few observations
B. the error terms are normally distributed
C. the regression function is linear
D. the robustness of the rank sum test
E. one or more predictor variables have been omitted from the model
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4. Which of the following plots might represent data for variables X and Y
that have a correlation coefficient equal to 0.82?

y

x

(b)

y

x

(d)

y

x

(a)

y

x

(c)

A. a
B. b
C. c
D. d
E. a and b

5. The correlation coefficient for the data in the graph below would be
expected to have a value that is

A. a positive number of magnitude approximately equal to one
B. a negative number of magnitude approximately equal to one
C. a positive number of magnitude approximately equal to zero
D. a negative number of magnitude approximately equal to zero

y

x

E. none of the above
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6. The Pearson correlation coefficient between variables A and B is known
to be −0.50, and the correlation between B and C is known to be 0.50.
What can we infer about the relationship between A and C?

A. There is no association between A and C .
B. A and C are independent.
C. A and C are negatively correlated.
D. A and C have a linear association.
E. The relationship cannot be determined from the information given.

7. It is reported that both Pearson’s product-moment correlation and Spear-
man’s rank correlation between two variables are zero. This implies

A. the two variables are independent
B. the two variables tend to follow a monotonic curve
C. there is no linear or monotonic association between the two variables
D. all of the above
E. none of the above

8. A data analyst is attempting to determine the adequacy of the model

y = �0 + �1x1 + �2x2 + �

for a particular set of data. The parameters of the model are

A. least-squares estimates
B. unbiased
C. x1 and x2

D. robust
E. �0, �1, and �2

9. A study was conducted to investigate the relationship between the estriol
level of pregnant women and subsequent height of their children at birth.
A scatter diagram of the data suggested a linear relationship. Pearson’s
product-moment correlation coefficient was computed and found to be
r = 0.411. The researcher decided to re-express height in inches rather
than centimeters and then recompute r . The recalculation should yield
the following value of r :

A. 0.000
B. −0.411
C. 0.411
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D. 0.500
E. cannot be determined from data available

10. An investigator finds the following results for a regression analysis based
on the model

Y = �0 + �1x1 + �2x2 + �3x3 + �.

Source of

Variability

d.f. Sum of

Squares

Mean

Square

F p-Value

Regression model 3 120 40 1.43 0.25
Error (residual) 36 1008 28
Total 39 1128

Assuming all assumptions that were made in the analysis are justified,
an appropriate conclusion is

A. the mean of the outcome variable Y is not significantly different from
zero

B. the intercept term �0 is significantly different from zero
C. the parameters of the model are significantly different from zero
D. the predictor variables x1, x2, and x3 do not account for a significant

proportion of the variability in Y
E. none of the above

11. A forward stepwise regression analysis was performed according to the
following models:

Step 1 : Y = �0 + �1x1 + �

Source of

Variability

d.f. Sum of

Squares

Mean

Square

F p-Value

Regression model 1 135 135 1.35 0.001
Error (residual) 28 280 10

Step 2 : Y = �0 + �1x1 + �2x2 + �



CORRELATION AND REGRESSION 259

Source of

Variability

d.f. Sum of

Squares

Mean

Square

F p-Value

Regression model 1 135 135
Added to

regression by x2

1 65 62 7.68 0.01

Error (residual) 27 218 8.07
Total 29 415

The analysis was summarized as follows:

Step 1: R2 = 32.5%
Step 2: R2 = 47.5%

Assuming all assumptions made in the analysis are justified, an appropri-
ate conclusion is

A. x2 accounts for a significant amount of the variability in Y over and
above that accounted for by x1

B. neither x1 nor x2 accounts for a significant amount of the variability
in Y

C. the proportion of variability explained by the regression model con-
taining both x1 and x2 is less than should be expected in a stepwise
regression analysis

D. the residual sum of squares is too large for meaningful interpretation
of the regression analysis

E. the F -ratio is too small for interpretation in step 2

12. A multiple regression analysis was performed assuming the model

Y = �0 + �1x1 + �2x2 + �3x3 + �.

The following results were obtained:

Parameter Estimate Standard Error of

Estimate

t-Test p-Value

�0 40 14.25 2.81 0.005
�1 5 2.43 2.06 0.025
�2 10 38.46 0.26 0.600
�3 7 2.51 2.79 0.005
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Assuming all assumptions made in the analysis are justified, an appropri-
ate conclusion is

A. none of the predictor variables considered belong in the model
B. all of the predictor variables considered belong in the model
C. x1 and x2 belong in the model, but x3 does not
D. x1 and x3 belong in the model, but x2 does not
E. x2 and x3 belong in the model, but x1 does not

13. An investigator finds the following results for a regression analysis of data
on 50 subjects based on the model

Y = �0 + �1x1 + �2x2 + �3x3 + �

Source of

Variability

d.f. Sum of

Squares

Mean

Square

F p-Value

Regression model 3 360 120 4.29 <0.01
Error (residual) 46 1288 28
Total 49 1648

Assuming all assumptions that were made in the analysis are justified,
an appropriate conclusion is

A. the mean of the response variable Y is not significantly different from
zero

B. the intercept term �0 is significantly different from zero
C. the parameters of the model are not significantly different from zero
D. the predictor variables x1, x2, and x3 account for a significant proportion

of the variability in Y
E. none of the above

14. Regression diagnostics are useful in determining the

A. coefficient of variation
B. adequacy of a fitted model
C. degrees of freedom in a two-way contingency table
D. percentiles of the t -distribution
E. parameters of a normal distribution

15. A group of men were examined during a routine screening for elevated
blood pressure. Those men with the highest blood pressure – namely
those with diastolic blood pressure higher than the 80th percentile for
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the group – were re-examined at a follow-up examination 2 weeks later.
It was found that the mean for the re-examined men had decreased by
8 mmHg at the follow-up examination. The most likely explanation for
most of the decrease is

A. the men were more relaxed for the second examination
B. some of the men became concerned and sought treatment for their

blood pressure
C. observer bias
D. the observers were better trained for the second examination
E. regression toward the mean





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER ELEVEN

Key Concepts

analysis of variance (ANOVA):
one-way
nested, hierarchical
two-way
linear model
fixed, random, and mixed models
factorial arrangement of

treatments
variance components

sum of squares, mean square, expected
mean square

sampling fraction, fixed effects, random
effects

simple effects, main effects, interaction
effects, additive effects

analysis of covariance, covariate,
concomitant variable

data transformation



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of Variance and
Linear Models

SYMBOLS AND ABBREVIATIONS
F Percentile of the F-distribution or corresponding test statistic
SSA sum of squares for factor A
MSA mean square for factor A
�2

A variance component of factor A
SSR residual sum of squares
MSR residual mean square
�2

R residual variance component

MULTIPLE TREATMENT GROUPS

Methods for comparing the means of two groups were discussed in Chapter 7. We
now discuss the comparison of means when there are three or more groups. As an
illustration, suppose we wish to investigate the mean effects of three treatments
A, B, and C. More specifically, we wish to use sample data to test the null hypothesis
that the three population means are identical – that is, we wish to test

H0: �A = �B = �C.

One approach to this problem is to perform all possible t-tests. In the present
example, this involves three t-tests: one to test the hypothesis �A = �B, a second
to test �A = �C, and a third to test �B = �C. There are a number of problems
with this approach. In the first place, the tests are not independent; if �A = �B and
�A =�C, then it follows automatically that �B =�C. Thus, we can test any two of the
three hypotheses and accomplish our goal. Which two of the three possible t-tests
should we perform? In general, if there are a means to be compared, we have a − 1

Basic Biostatistics for Geneticists and Epidemiologists: A Practical Approach R. Elston, W. Johnson
c© 2008 John Wiley & Sons, Ltd
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independent pairs and hence a − 1 degrees of freedom in choosing such pairwise
comparisons.

One of the assumptions of the t-test is that the variances are equal in the
two groups being compared. If we have three or more groups, we must assume
all pairs of groups have equal variances in order to perform the pairwise t-tests in
the usual manner. This is equivalent to assuming that all the groups have the same
variance, however, and if this is so, we can obtain a better estimate of the variance
by pooling the information available in all the groups. Such a pooled estimate will
have a greater number of degrees of freedom, and a test using this pooled estimate
will have more power to detect differences among group means.

Even after eliminating the redundant pairwise comparisons and obtaining a
pooled estimate of the variance, much effort will still be needed to compare all
pairs of means with separate t-tests. It would be helpful if we had a single test
to accomplish this goal. The F-test, which allows one to compare two variances,
offers such a test. The strategy used is to compare the variability among the group
means with the variability within the groups. If the variability among the sample
group means is approximately what one might expect from the variability within
the groups, we conclude that the group means are not significantly different from
one another. If, on the other hand, the variability among the sample group means
is substantially larger than what we expect from the variability within the groups,
we conclude that the means are significantly different and perhaps one or more
of the pairwise comparisons is significant. Our criterion for evaluating the relative
magnitude of these two sources of variability is the F-statistic. We compute a mean
square deviation among group means and a pooled estimate of the mean square
deviation within groups. Under the null hypothesis that the true population group
means are equal, the ratio of these two mean squares – provided the observations
are independent and come from normal distributions – follows an F-distribution.

This approach to data analysis is an example of a general procedure, introduced
by Sir Ronald Fisher, known as the analysis of variance. The analysis of variance
(sometimes abbreviated as ANOVA) is essentially a procedure for partitioning
the sum of squared deviations from the mean into components associated with
recognized sources of variation. These components, which are sums of squares
in their own right, are divided by their respective degrees of freedom to obtain
mean squares. Ratios of mean squares are computed and compared with the
F-distribution to test hypotheses. In this context, the analysis of variance is basic-
ally the same procedure as regression analysis. Whereas in regression analysis the
predictor variables are quantitative and usually continuous, in the analysis of vari-
ance the predictor variables (such as ‘groups’, and often called ‘factors’) are discrete
categories.

If the F-test is used to compare more than two group means and it leads to
the conclusion that the means are not all equal, then it is of interest to compare
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the means pairwise to discover which are significantly different. These comparisons
should make use of the pooled estimate of the within-group variability. We must
also take into consideration the increased probability, when performing multiple
tests, of obtaining by chance at least one p-value that would lead to a conclusion
that two means are significantly different. We saw in Chapter 8 that it is important
to allow for multiple tests, and this is discussed further specifically in the context
of the analysis of variance in the Appendix.

In Chapter 2 we discussed a number of different experimental designs. For
each design there is a corresponding analysis of variance. It is not possible in this
brief chapter to cover the analysis corresponding to every design we have men-
tioned. Instead, we discuss the analysis of variance for a few special situations that
illustrate the main principles involved.

COMPLETELY RANDOMIZED DESIGN WITH A SINGLE
CLASSIFICATION OF TREATMENT GROUPS

First we consider the situation in which we have a treatment groups with the same
number n of observations in each group. Thus, a total of na experimental units
have been randomly assigned, n to each of the a treatments. The results of any
analysis of variance can be summarized in a table similar to the tables we have
already seen for regression analysis. Table 11.1 shows the table appropriate for this
situation. The mean squares are obtained from the corresponding sums of squares
by dividing by the appropriate number of degrees of freedom. Hence, in Table 11.1,
MSA =SSA/(a−1) and MSR =SSR/a(n−1). As indicated in Table 11.1, the F-ratio
to test the significance of heterogeneity among the group means is MSA/MSR. This
particular analysis is sometimes called a one-way analysis of variance, or an among-
and within-groups analysis of variance.

Table 11.1 Outline of analysis of variance for comparing a group means with n
observations per group

Source of Variability Degrees of
Freedom

Sum of
Squares

Mean
Square

F

Among groups a − 1 SSA MSA MSA/MSR

Within groups (residual) a(n − 1) SSR MSR

Total an −1 SST

Suppose, for example, an experiment is conducted in which 40 patients are ran-
domly assigned to four treatment groups, so that 10 patients each receive one of the
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treatments A, B, C, and D, where the treatments are various drugs aimed at lower-
ing blood pressure. Suppose, further, that after 4 weeks of treatment the results
shown in Table 11.2 are obtained. Clearly, the mean diastolic blood pressure is low-
est for treatment group A. But the question remains whether any of the differences
are statistically significant. Since the four sample standard deviations are approxim-
ately equal, and diastolic blood pressure is approximately normally distributed, an
F-test is appropriate for answering this question. The analysis of variance is given in
Table 11.3. The F-ratio is 3.88, with 3 and 36 d.f. From a table of the F-distribution
(e.g. at http://www.statsoft.com/textbook/stathome.html?sttable.html, the tables for
� = 0.025 and 0.01) we see that the 97.5th percentile of F with 3 and 36 d.f. lies
between 3.59 and 3.46, and the 99th percentile lies between 4.51 and 4.31. Thus,
0.01 < p < 0.025 and we conclude that, at the 5% significance level, at least two
of the means are different. It is clear from inspecting the mean blood pressures
in Table 11.2 that the effect of treatment A is different from those of treatments
B, C, and D, which are very much alike. Further statistical tests can be used (see the
Appendix) to determine which sets of means are, and which are not, significantly
different.

Table 11.2 Summary statistics for diastolic blood pressure (mmHg) after
4 weeks of treatment

Treatment

A B C D

Number of patients 10 10 10 10
Mean 80 94 94 90
Standard deviation 10.5 9.5 9.7 10.2
Standard error of the mean 3.3 3.0 3.1 3.2

Table 11.3 Analysis of variance corresponding to the summary results in Table 11.2

Source of Variability Degrees of
Freedom

Sum of Squares Mean Square F

Among drug groups 3 1160.00 386.67 3.88
Within drug groups 36 3587.67 99.66
Total 39 4747.67

These concepts are sometimes made clearer by introducing a mathematical
model for the data. Specifically, we introduce a linear model as follows: Let any
observation be denoted yik, where i indicates the group in which the observation
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belongs (i = 1, 2, . . . , a), and k denotes a specific observation in the ith group
(k = 1, 2, . . . , n). We take as our linear model

yik = �i + �ik

where �i is the mean of the ith group and �ik is the random error, or residual,
associated with the kth observation in the ith group. From this model we see that
each observation is made up of two components, or effects: a mean effect, depending
upon the group it belongs to, and a residual effect. Now consider the �i and �ik to
be random variables. Let �2

A be the variance of the �i (i.e. the variance among the
population means), and let �2

R be the variance of the �ik (i.e. the population residual
variance); these are called variance components. Then if we take repeated samples,
the expected, or mean, value of MSA is �2

R + n�2
A; and the expected, or mean, value

of MSR is �2
R. Note that under the null hypothesis the �i are all equal (and hence

�2
A = 0), and so these two mean squares then have the same expected value. It is

necessary for two mean squares to have the same expected value if their ratio is
to be distributed as F. As we shall see in later examples, this gives us a method of
choosing the appropriate ratio of mean squares when we wish to test hypotheses in
more complicated situations.

DATA WITH MULTIPLE CLASSIFICATIONS

Let us now turn to the situation in which the data to be analyzed can be classified in
more than one way. For instance, we may be able to classify the data both into the a
groups A1, A2, . . . , Aa and also into the b groups B1, B2, . . . , Bb. These are thus two
‘factors’, A and B. The way to analyze the data then depends on the way the data
are classified by these predictor variables, or factors. Furthermore, when there are
multiple classifications, the way we choose the treatments for investigation and the
population to which we wish to make inferences also determine the appropriate
test statistic for any particular hypothesis.

Let us assume that the a treatments A1, A2, . . . , Aa are a subset of the total NA

possible treatments. Thus we have a sample of a out of NA treatments, and we say
the sampling fraction for treatments is a/NA. The expected value of a mean square
is often a function of the sampling fraction. If we do not wish to extrapolate beyond
the treatments being investigated, a = NA, and so the sampling fraction is 1. In this
case we say the treatment effects are fixed. Suppose, for example, we have a = 5
nurses who are taking blood pressures and we wish to test the null hypothesis that
there is no difference among the nurses with respect to the blood pressures they
observe. If we are interested in making inferences only about these five particular
nurses, then NA = 5 and the sampling fraction is 1. We say that the ‘nurse effects’
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are fixed. On the other hand, suppose we consider these five nurses to be a random
sample of all NA nurses in a hospital, and the question is whether there are significant
differences among the nurses in this hospital with respect to the blood pressures
they observe. Then NA is a larger number and the sampling fraction is less than 1.
In this case we say the treatment effects (i.e. the ‘nurse effects’) are random. If we
wish to consider the five nurses to be a random sample of all nurses, so that we
are testing whether there are differences among nurses in general with respect to
blood pressures observed, then the sampling fraction is virtually zero.

The factors under study in an investigation may all be associated with fixed
effects, they may all be associated with random effects, or some may be associated
with fixed effects and others with random effects, so that we have a mixture of
fixed and random effects. The models corresponding to these situations are called
fixed models, random models, and mixed models, respectively.

NESTED PREDICTOR VARIABLES

Let us consider the situation in which the treatment categories of multiple factors
follow a nested, or hierarchical, arrangement, such as might arise from a multistage
cluster-sampling scheme. For example, suppose we have a sample of a units of blood,
which we denote A1, A2, . . . , Aa. From each unit we take b aliquots, and then on each
aliquot we make n replicate observations. This arrangement of the observations is
illustrated in Figure 11.1, and the corresponding nested, or hierarchical, analysis of
variance is outlined in Table 11.4. The units of blood are the groups of type A and
the aliquots are the groups of type B. The mean squares are obtained, as always,
by dividing each sum of squares by its number of degrees of freedom. Note that
within each group of observations of type A there are b−1 d.f. among the groups of
type B; hence, the total number of degrees of freedom among all the groups of type
B, within the groups of type A (among aliquots within the a units, in our example),
is a(b − 1). Similarly, there are n − 1 d.f. among the replicate observations within

A1 A2 A1

B11 B12 B21 Ba1 Ba 2 BabB22 B2bB1b

n n n n n n n n n

Figure 11.1 Nested arrangement of treatment categories: n replicate observation on
each of b aliquots from each of a units of blood.
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Table 11.4 Outline of analysis of variance for two nested factors with n replicate
observations per treatment

Source of Variability Degrees of
Freedom

Sum of
Squares

Mean
Square

F

Among groups of type A a − 1 SSA MSA FA

Among groups of type B within
groups of type A

a(b − 1) SSB|A MSB|A MSB|A/MSR

Among replicates within groups
of type B (residual)

ab(n − 1) SSR MSR

Total abn −1 SST

any group of type B, and hence, as there are altogether ab groups of type B, there
are ab(n − 1) d.f. among replicates within groups of type B. Finally, note that the
total number of degrees of freedom adds up to one less than the total number of
observations, that is,

(a − 1) + a(b − 1) + ab(n − 1) = abn − 1.

This equality must hold for any analysis of variance table.
It can be seen in Table 11.4 that the appropriate F-statistic to test whether there

are significant differences among the groups of type B (among aliquots within units,
in our example) is MSB|A/MSR. The appropriate statistic (FA) to test whether there
are significant differences among the groups of type A, however, depends on the
sampling fraction b/NB. This can be seen by inspecting the expected mean squares
in Table 11.5, which are functions of three variance components: �2

A, the variance
among the group effects of type A; �2

B|A, the variance of the group effects of type
B within the groups of type A; and �2

R, the variance of the residual effects within
groups of type B. First, note that when �2

B|A = 0, MSB|A and MSR have the same
expected values, confirming that the F-statistic MSB|A/MSR is appropriate to test
for significant differences among the groups of type B, regardless of the sampling

Table 11.5 Expected values of the mean squares for the analysis
of variance in Table 11.4

Mean Square Expected Mean Square

MSA �2
R +

(
1 − b

NB

)
n�2

B|A + bn�2
A

MSB|A �2
R + n�2

B|A
MSR �2

R
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fraction b/NB. To test for significant differences among the groups of type A, we
need to divide MSA by a mean square that has the same expected value when �2

A =0
(i.e. by a mean square that has expected value �2

R + (1 − b/NB)n�2
B|A). If b = NB,

then 1 − b/NB = 0 and FA = MSA/MSR is appropriate. If, on the other hand, NB is
very large compared with b, then b/NB

∼= 0 and FA = MSA/MSB|A is appropriate.
Consider our example in which b aliquots are taken from each unit of blood. A unit
of blood comprises 500 ml. If we divide each unit into five 100 ml aliquots, so that
b = NB = 5, the aliquot effects are fixed and the divisor in FA should be MSR. If, on
the other hand, we take a sample of five 0.l ml aliquots from the total of 5000 such
aliquots (500 ml ÷0.1=5000), so that b=5 and NB =5000, then the aliquot effects
are random; and because in this instance b/NB

∼= 0, the divisor in FA should be
MSB|A. If b/NB is neither unity nor close to zero, then we must use an approximate
test, but this is beyond the scope of this book.

This analysis of variance can be extended to any number of nested factors,
and it is not necessary to have the same number of replicates within each treat-
ment of a particular type, or the same number of treatment categories of a
given type within each category of another type. There are computer programs
that produce the analysis of variance table and calculate F-statistics. Many of
these programs, however, use MSR as the divisor for all the F-tests, regardless
of whether or not it is appropriate. In other words, many computer programs cal-
culate F-statistics that are correct only if the effects of all the predictor variables are
fixed.

As an example, consider a clinical trial in which 30 diabetes patients all
with average baseline hemoglobin A1c (HbA1c) equal to or greater than 8.0%
were randomly assigned to one of three treatments, 10 patients per treatment.
For brevity, we denote the treatments A, B, and C. We consider the 10 sub-
jects for each treatment to be a sample from a very large population and each
set of 10 subject effects to be ‘nested’ under the treatment to which the subjects
are assigned. After 3 months of daily treatment, a sample of blood was drawn
from each subject and divided into two aliquots. The aliquots were given coded
identifications so that only the data coordinator could link an aliquot of blood to
a specific patient. Thus, blind duplicate determinations were obtained for each
patient’s HbA1c at the end of 3 months. The mean change in HbA1c and 95%
confidence intervals are given in Table 11.6, and the analysis of variance is in
Table 11.7.

In this experiment, the subjects within each treatment group would be con-
sidered to be a random sample of s=10 from a very large population of NS subjects
and the determinations on each subject would be viewed as a random sample of
d =2 determinations from a very large population of ND determinations. Therefore,
(1 − d/ND) ≈ 1 and (1 − s/NS) ≈ 1. On the other hand, the treatments would be a
‘population’ of NA treatments where all NA treatments were used in the experiment.
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Table 11.6 Mean change in HbA1c (%) and 95% confidence interval by treatment

Treatment Mean Change Lower 95% Limit Upper 95% Limit
in HbA1c

A –0.07 −0.71 0.58
B –1.68 −2.33 −1.30
C –2.30 −2.95 −1.65

Table 11.7 Analysis of variance for HbA1c trial

Source of Variability d.f. Sum of Squares Mean Square

Among treatments 2 53.2523 26.6262
Among subjects within treatments 27 54.1345 2.0050
Determinations within subjects 30 1.8150 0.0605
Total 59 109.2018

The expected mean squares are:

among treatments, σ 2 + 2σ 2
Subjects|Treatments + 20σ 2

Treatments

among subjects within treatments, σ 2 + 2σ 2
Subjects|Treatments

among determinations within subjects σ 2.

The effects of different determinations and different subjects would be ran-
dom effects, but because all NA treatments in the population were used in the
experiment, the effects of treatments would be ‘fixed effects’. Let t =NA denote
the number of treatments, where here t =3. The variance component for treat-
ments when there are equal numbers of subjects per treatment is frequently
expressed as

σ 2
Treatments =

(μ1 − μ)2 + (μ2 − μ)2 + · · · + (μt − μ)2

t − 1
,

where μi is the population mean for those subjects who receive the ith treatment
and μ = (μ1 + μ2 + · · · +μt) /t.

On observing the expected mean squares, it should be clear that the denom-
inator of the F-statistic for testing the equality of treatment effects should be the
calculated mean square for subjects within treatments; on the other hand, the
denominator of the F-statistic to test the hypothesis that the variance component
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for subjects is zero should be the calculated mean square for determinations within
subjects. Accordingly, the test statistics are:

among treatments, F = 26.6262
2.0050

= 13.28, p < 0.0001; and

among subjects within treatments, F = 2.0050
0.0605

= 33.14, p < 0.0001.

The p-values for pairwise comparisons of the treatments are as follows:

Comparison Unadjusted p-value Adjusted p-value

A vs B 0.0012 0.0036
A vs C <0.0001 <0.0001
B vs C 0.1775 0.5325

Here the p-values have been adjusted using the Bonferroni method, that is, multi-
plied by 3. These results lead to the conclusion that significant reduction in HbA1c
was achieved with treatments B and C but treatment A was not effective. The
difference between B and C was not statistically significant.

An estimate of the variance component due to variability among determina-
tions within subjects is obtained directly from the analysis of variance as

σ̂ 2 = 0.0605.

An estimate of the variance component due to variability among subjects within
treatments is found as follows:

σ̂ 2
Subjects|Treatments =

2.0050 − 0.0605
2

= 0.9723.

It is clear that the variability among HbA1c values within treatment groups was
dominated by the variability among subjects.

CROSS-CLASSIFIED PREDICTOR VARIABLES

In Chapter 2 we described the factorial arrangement of treatments, in which the
treatments comprise all possible combinations of different levels of two or more
factors. Thus if each factor is a drug and each level a different dose, then in a
factorial arrangement the treatments comprise all possible combinations of dose
levels of the drugs. Suppose, for example, we study two different dose levels of drug
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A in combination with three different dose levels of drug B, so that altogether there
are six distinct treatments: A1B1, A1B2, A1B3, A2B1, A2B2, and A2B3. (In general
we could have a levels of factor A and b levels of factor B, and so a total of ab
treatments.) The resulting data are then cross-classified. The mean responses to
the treatments can also be cross-classified, as the following two-way table shows:

Factor B

B1 B2 B3

Factor A A1 �11 �12 �13

A2 �21 �22 �23

Thus, �11 is the (population, or true) effect of the treatment A1B1, �12 that of the
treatment A1B2, and so forth. These means are called simple effects.

If, in a study, n sample units are randomly assigned to each treatment, we can
describe the data by the linear model

yijk = �ij + �ijk

where i = 1, 2 (in general, i = 1, 2, . . . , a), j = 1, 2, 3 (in general, j = 1, 2, . . . , b),
and k = 1, 2, . . ., n. Thus, �ijk is a random amount by which the response of the
kth replicate differs from �ij, the mean response (of all possible study units) to
treatment AiBj. This model is similar to the model we introduced for analyzing data
with a single classification factor, and in fact we can analyze the data as though there
are just six different groups, testing the null hypothesis that the six group means
(simple effects) are all equal.

When we have a factorial arrangement of treatments, however, it is often
of interest to ask questions about each factor separately. We may ask, for example,
whether there is any difference in mean response to A1 and A2, regardless of the level
of B; or whether there are any significant differences among the mean responses to
B1, B2, and B3, regardless of the level of A. These mean responses are called main
effects. Thus the main effect of treatment A1 is the average of �11, �12, and �13, and
the main effect of A2 is the average of �21, �22, and �23. Similarly, the main effect of
B1 is the average of �11 and �21, and so on. These averages are usually taken to be
unweighted averages (e.g. (�11 +�12 +�13)/3 for the main effect of A1). Sometimes,
however, the main effects are defined as weighted averages, some simple effects
being given more weight than others in the averaging process. Except in a special
situation that will now be described, the difference between the main effects of
A1 and A2, and the differences among the main effects of B1, B2, and B3, depend
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on how the main effects are defined. Suppose the differences between the simple
effects of A1 and A2 are the same at all levels of B – that is, suppose

�11 − �21 = �12 − �22 = �13 − �23.

Then it does not matter how the simple effects are weighted in the definition of
the main effects – the difference between the main effect of A1 and the main effect
of A2 is always the same, and the difference between the main effects of any two
particular levels of B is always the same. Equivalently, the same result holds (i.e.
the differences between main effects do not depend on how the simple effects are
weighted in the definition of the main effects) if the level of A has no effect on the
difference between simple effects of B1, B2, and B3 – that is, if

�11 − �12 = �21 − �22 and �12 − �13 = �22 − �23.

In this situation we say there is no interaction between A and B, or that the
effects of the different levels of A and B are additive. When the means are plotted
on a graph and the simple effects making up each main effect are joined by straight
lines, the lines are parallel, as in Figure 11.2. If the lines are not parallel, as in
Figure 11.3, then an interaction is present and the different levels of A and B are
not all additive. Thus, if �11 −�21 is equal to �12 −�22, which is the same as �11 −�12

being equal to �21 −�22, there is no interaction between the two levels of A and the
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(a)

B1 B2 B3

(b)

Figure 11.2 Mean responses in a case in which there is no interaction: (a) for different
levels of factor B plotted against the levels of factor A; (b) for different levels of factor A

plotted against the levels of factor B
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(a)

0
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0
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B1 B2 B3

A1

A1

A2

A2

(b)

B1 B2 B3

Figure 11.3 Mean responses in a case in which there is interaction, the different levels
of factor A being plotted against the levels of factor B. In case (a), no transformation can

eliminate the interaction; in case (b), the square-root transformation eliminates the
interaction: plotting the square roots of the means results in Figure 11.2(b).

first two levels of B; if these differences are not equal, then the difference between
them, or

�11 − �21 − (�12 − �22),

is an interaction effect. Similarly,

�12 − �13 − (�22 − �23)

is an interaction effect between the two levels of A and the second and third
levels of B.

In practice, the presence or absence of interaction is obscured by chance
variability in the data. We therefore test whether the interaction is significant
(i.e. whether the observed departure of the sample means from additivity is too
large to be explained by the chance variation within each treatment group). Simil-
arly, we can test whether each of the main effects is significant (i.e. whether there
are significant differences among the main effects of each factor). The analysis of
variance table for a levels of A and b levels of B, with n replicates of each treat-
ment, is given in Table 11.8. This is often called a two-way analysis of variance. The
F-statistic to test for the presence of interaction is MSAB/MSR, but the appropriate
divisors in the statistics FA and FB to test for differences among the main effects
depend on whether the effects are fixed or random.

Table 11.9 gives the expected values of the mean squares in terms of the fol-
lowing four variance components: �2

A, the variance among the main effects of A; �2
B,

the variance among the main effects of B; �2
AB, the variance among the interaction

effects; and �2
R, the residual variance within the ab treatments. Inspection of this
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Table 11.8 Outline of analysis of variance for a factorial arrangement of treatments: two
factors and n replicate observations per treatment

Source of Variability d.f. Sum of Squares Mean Square F

Main effects of A a − 1 SSA MSA FA

Main effects of B b − 1 SSB MSB FB

A × B interaction (a − 1)(b − 1) SSAB MSAB MSAB/MSR

Residual ab(n − 1) SSR MSR

Total nab −1 SST

Table 11.9 Expected values of the mean squares for the analysis
of variance in Table 11.6

Mean Square Expected Mean Square

MSA σ 2
R +

(
1 − b

NB

)
nσ 2

AB + bnσ 2
A

MSB σ 2
R +

(
1 − a

NB

)
nσ 2

AB + anσ 2
B

MSAB σ 2
R + nσ 2

AB

MSR σ 2
R

table reveals that if the main effects of a factor are fixed (so that the sampling fraction
is 1), the appropriate divisor for the F-statistic to test for significant differences
among the main effects of the other factor is MSR. If the main effects of a factor are
random and the sampling fraction is near 0, however, the appropriate denominator
for the other factor is MSAB.

Suppose, for example, we are interested in comparing two different types of
surgery. Eligible patients are randomly assigned to each type of surgery and to
each of four different surgeons. The two different types of surgery are fixed effects
because they can hardly be considered a random sample of types of surgery: we
chose these two particular types for study. We might wish to consider the four
surgeons as a random sample, however, if we are interested in comparing the two
types of surgery when performed by all surgeons, not just the particular four in
our study. (Of course, the four surgeons were most probably not a random sample
of all surgeons; but if each is in a different location, and on the basis of several
criteria they appear to be typical of the general population of surgeons, it could
be of interest to analyze the results of the study as though the surgeons were a
random sample.) In this situation, if we let the type of surgery be factor A, we have
a = NA = 2 with sampling fraction a/NA = 1. Also, letting the different surgeons
be factor B, we have b = 4 and NB large, so that the sampling fraction b/NB is
near zero. Then, to test whether there is a significant difference between the two
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types of surgery, the appropriate divisor is MSAB, whereas to test whether there are
significant differences among surgeons the appropriate divisor is MSR.

Notice that if we use MSAB as the divisor when we should use MSR, the
F-statistic will tend on an average to be too small. The test will be conservative,
tending too often not to reject the null hypothesis of no differences among the
main effects. If, on the other hand, we use MSR as the divisor when we should use
MSAB, the test will tend on an average to be liberal – the null hypothesis of no main
effects will tend to be rejected too frequently. If there is no interaction (�2

AB = 0),
however, both MSAB and MSR have the same expected value and either can be
used as the divisor. In this situation the best procedure is to pool the two mean
squares to obtain an estimate of �2

R with more degrees of freedom. The pooling is
accomplished by adding together the corresponding sums of squares SSAB and SSR,
and then dividing by the sum of their degrees of freedom:

(a − 1)(b − 1) + ab(n − 1).

This pooled mean square, with (a − 1)(b − 1) + ab(n − 1) d.f., is then used as the
divisor in F-tests for each of the main effects.

If there is only one study unit for each treatment (i.e. there is no replication
and n = 1), there are no residual degrees of freedom and MSR does not exist.
Nevertheless, we can still test each of the main effects using MSAB, with (a −
1)(b − 1) d.f., as divisor. At worst, this test may be conservative (if �2

AB �= 0 and the
main effects of one of the factors are random), and so not too powerful. If, however,
one of the main effects is judged to be significant at a particular level on the basis
of such a test, then we can be sure that there is indeed significance at that level. If
no interaction is present, it is easier to interpret a significant difference between
two main effects. Sometimes it is possible to transform the measurements in such
a manner that no interaction is present. For example, if we plot the square roots of
the six means depicted in Figure 11.3(b), we obtain Figure 11.2(b). Thus there is
no interaction among these means after transformation to the square root scale. On
the other hand, if there is a crossing of the lines as depicted in Figure 11.3(a), no
transformation will eliminate the interaction. Biological systems are often governed
by factors that act multiplicatively, rather than additively, in which case a logarithmic
transformation will bring about additivity (i.e. remove interaction).

As an example of testing for interaction, consider a clinical trial in which 104
participants were given one of four types of meal: (1) high glycemic index (GI)
and high in carbohydrates, (2) high GI and low in carbohydrates, (3) low GI and
high in carbohydrates, and (4) low GI and low in carbohydrates. The glycemic
index is used to rank foods on how they affect blood glucose levels; it estimates
how much blood glucose increases in the two or three hours after eating a specific
food. The 104 participants were randomly assigned to the four meal types, 26 per
type. The experimental plan was a completely randomized design and the primary
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outcome was rise in serum glucose level from baseline to two hours after finishing
the assigned meal (see Table 11.10) . An analysis of variance is shown in Table 11.11.

Table 11.10 Summary results for glucose trial

High GI Low GI

High Carb Low Carb High Carb Low Carb

Sample size 26 26 26 26
Mean rise mg/dl 31.3 25.0 20.7 11.4
Stand Dev mg/dl 15.0 14.6 12.6 15.4

Table 11.11 Analysis of variance for serum glucose trial

Source of
Variability

d.f. Sum of Squares Mean Square F p-value

GI 1 3804.2404 3804.2404 18.22 <0.0001
Carbohydrates 1 1592.7788 1592.7788 7.63 0.0068
GI∗Carb 1 57.0096 57.0096 0.27 0.6024
Error 100 20876.1923
Total 103 26330.2211

Clearly, the interaction between GI and carbohydrates (denoted GI∗Carb in
Table 11.11) was not statistically significant (p = 0.6024). It is also clear that both
low carbohydrates (p = 0.0068) and low GI (p < 0.0001) resulted in a smaller rise
in mean serum glucose levels two hours post meal. A summary of the main effects
is given in Table 11.12.

Table 11.12 Rise in serum glucose (mg/dl) two hours after meal

Meal Type Mean Rise
in Glucose

Lower 95%
Limit

Upper 95%
Limit

High GI 28.13 24.16 32.11
Low GI 16.04 12.06 20.01
High Carbohydrates 26.00 22.02 29.98
Low Carbodrates 18.17 14.20 22.15

An analysis of variance of cross-classified predictor variables will often be per-
formed in a situation where it is not possible to assign study units at random to
treatments. For example, we may wish to study how two different drugs, or a
drug and a placebo treatment, affect the blood pressure of persons with different
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genotypes at a particular SNP; specifically, we may wish to know whether there is a
drug by genotype interaction. Clearly, we cannot randomize the persons in our study
to specific genotypes, but we might nevertheless analyze our data in this same way,
taking a=2 for the drug factor and b=3 for the three SNP genotype categories of a
second factor. All we have stated above would still apply, though under the assump-
tion that the results would have been the same had there been random assignment
to genotypes. In particular, it might be desirable to define the main drug effects
as a weighted average over all genotypes, the weights being the genotype frequen-
cies in the population; and a transformation that eliminates interaction, if it exists,
should be used for the analysis (with transformation of the estimated effects back
to the original units for clinical interpretation). Because there has not been random
assignment to genotypes, thought must be given to what confounding factors may
affect the results. Perhaps, for example, a particular genotype predisposes a person
to drink more fluids, or to eat a diet of higher calorific value, and we want to be
sure this is not the reason why the response is different among the three genotype
groups. We now turn to a type of analysis that can help in this situation.

ANALYSIS OF COVARIANCE

In both regression analysis and the analysis of variance, we assume the data follow
a linear model (i.e. that the response variable is a linear function of the predictor
variable(s) and a random error). In regression analysis, the predictor variables are
quantitative and usually continuous, whereas in the analysis of variance the predictor
variables are always discrete. If our linear model contains both types of predictor
variable, the corresponding analysis is called an analysis of covariance.

As an example, suppose we wish to compare three different drug treatments
for their effects on blood pressure, but, because we know blood pressure changes
with age, we wish to include age in our linear model. Here, we have two predictor
variables: the quantitative variable age and the discrete variable drug treatment.
The analysis would follow the same principles we have discussed for regression
analysis and the analysis of variance, but would be called an analysis of covariance.
The quantitative trait age is called a covariate, and the purpose of the analysis is to
determine whether, after allowing for the effects of age, the treatment effects are sig-
nificantly different. Note that, although we cannot random randomly assign patients
to ages, we can nevertheless randomly assign the drug treatments to patients, and
hence might expect the ages of the groups receiving the three drug treatment to be
comparable, Accordingly, in this type of analysis we assume that the effect of age,
the covariate, is the same in all three drug treatment groups; that is, we assume
that the regressions of blood pressure on age in the three groups are parallel lines.
However, there are two reasons to allow for the effect of age. First, even though
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there is random assignment of patients to the different drug treatments, the three
groups will probably still differ somewhat in their age distributions. An analysis of
covariance compares the treatment effects ‘adjusted’ to a common mean age for
the three groups (i.e. as though the three groups had the same mean age). Second,
even if the three groups have exactly the same mean age, allowing for age as a
covariate identifies this extra source of variation and excludes it from the residual
mean square. The residual mean square is thus smaller and, as a consequence,
our tests of hypotheses are more powerful. Sources of variability that are randomly
distributed among treatment groups do not affect the validity of significance tests,
but do affect their power. An analysis that takes account of these sources, excluding
from the residual mean square any variability due to them, is usually more power-
ful. Concomitant variables, which were discussed in Chapter 2, are for this reason
often taken to be covariates in an analysis of covariance. The results of an analysis of
covariance must be carefully scrutinized, however, because they can be misleading
if the regression on a covariate (the slope of the straight line for predicting the
response variable from that covariate) is not the same in all groups.

ASSUMPTIONS ASSOCIATED WITH
THE ANALYSIS OF VARIANCE

The F-distribution is the theoretical model against which an F-statistic is evaluated.
To be valid, hypothesis-testing procedures using the F-distribution in the analysis
of variance require the following assumptions:

1. The numerator and denominator of the F-ratio are independent.
2. The observations represent random samples from the populations being

compared.
3. The observations are drawn from normally distributed populations.
4. The variances of all the populations are equal.

If the data fail to satisfy these assumptions, then the stated significance levels may
be in error. For example, the F-tables may suggest that the p-value is 0.05 when
the true p-value is 0.03 or 0.06. Whereas this small error may not be important, it
is the uncertainty of its magnitude that is disturbing. Since it may be impossible
to be certain that all the assumptions are satisfied exactly, F-tests in the analysis of
variance are often viewed as approximate rather than exact.

The first two assumptions are satisfied if there is randomization. Random alloc-
ation of study units to the comparison groups virtually assures that the numerator
and denominator of the F-ratio are independent, and random selection of the study
units allows one to make valid inferences to populations. Unless departure from
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normality is so extreme that it can be readily detected by visual inspection of
the data, lack of normality has little effect on the test. The analysis of variance
F-test to compare means is fairly robust against nonnormality, whether in terms of
skewness or kurtosis. This is in contrast to the F-test to compare two variances, dis-
cussed in Chapter 7, which is very sensitive to nonnormality. In the case of marked
skewness, it may be more appropriate to compare population medians rather than
means. In such instances, it may be possible to transform the data (e.g. by taking
logarithms or square roots of the data) to achieve a symmetric distribution of obser-
vations that more closely resembles a normal distribution. Analyzing the means on
this transformed scale would be equivalent to analyzing the medians on the original
scale. We can also transform the data to their ranks, as is done for Wilcoxon’s test
(Chapter 7). This is the basis of a procedure known as the Kruskal–Wallis test.
Finally, the analysis of variance F-test is also robust to violation of the assumption
of homogeneity of variances, provided the number of replicate observations is the
same for each treatment. When the various treatment samples are unequal in size,
however, large differences among the variances can have a marked effect on the
F-test. A preliminary test can be performed to check the assumption of homosce-
dasticity. If significant heteroscedasticity is present, it may be possible to transform
the data to achieve homogeneity among the variances.

SUMMARY

1. The analysis of variance is a procedure for partitioning the sum of squared devi-
ations from the mean into components associated with recognized sources of
variation. The sums of squares are divided by their respective numbers of degrees
of freedom to obtain mean squares, and ratios of mean squares are compared
with the F-distribution to test null hypotheses that sets of means are all equal,
or that certain sources of variation are not significant.

2. Every analysis of variance is based on a particular linear model, and so the
analysis of variance is basically the same procedure as regression analysis.
Whereas in regression analysis the predictor variables are quantitative and
usually continuous, in the analysis of variance they are always discrete.

3. The appropriate analysis and F-tests depend on the experimental design. Simp-
lest is a one-way, or among-and-within-groups, analysis of variance. The null
hypothesis is that the group means are all equal, and the F-statistic is the among-
groups mean square divided by the within-groups, or residual, mean square.

4. When there are multiple classifications of the data, the appropriate divisor in the
F-ratio may depend on the sampling fraction – the fraction of the total number of
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treatments of a particular type that are represented in the study. If the sampling
fraction is 1, the treatment effects are fixed; if it is less than 1, they are random.
For an F-statistic to follow the F-distribution under H0, it is necessary for both
the numerator and denominator to have the same expected value under H0.

5. In a nested, or hierarchical, analysis of variance, the residual mean square is the
appropriate divisor to test for differences among groups at the lowest level within
groups at higher levels. The appropriate mean square to test for differences
among groups at higher levels depends on the sampling fraction(s) at lower
levels.

6. In the analysis of cross-classified data, such as arise in a factorial arrangement of
treatments, we define simple effects (cell means), main effects (averages of cell
means that pertain to one level of a factor), and interaction effects (differences
of simple effects that detect ‘nonparallelism’). If there are no interaction effects
between the factors A and B, then the effects of the different levels of A and B
are additive.

7. In a two-way analysis of variance, the residual mean square is appropriate to
test for interaction effects. Either the residual or the interaction mean square
is appropriate to test for one of the main effects, depending on whether the
other main effects are fixed (sampling fraction = 1) or a random sample from a
large population (sampling fraction near 0). Use of the interaction mean square
will always result in a test that is valid when the underlying necessary assump-
tions hold, but the test may be conservative and hence perhaps not powerful.
Sometimes interaction can be removed by a transformation of the data.

8. The analysis of covariance is a combination of regression analysis and the analysis
of variance. It is often used to allow for concomitant or possibly confounding
variables when comparing several groups.

9. Analysis of variance F-tests assume: (1) the numerator and denominator are
independent; (2) we have random samples; (3) we have normally distributed
populations; and (4) the variances of all the populations are equal. Assumptions
1 and 2 are satisfied by appropriate randomization. The test is fairly robust against
nonnormality and also, provided the individual treatment samples are the same
size, against heteroscedasticity.

FURTHER READING

Kutner, M.H., Nachtsheim, C.J., Neter, J., and Li W. (2005) Applied Linear Statistical
Models, 5th edn. Boston: McGraw-Hill Irwin. (This book provides a good coverage of
linear models, including both regression analysis and analysis of variance.)
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PROBLEMS

1. Which of the following is not an assumption required in using the F -
distribution to test hypotheses in an analysis of variance?

A. The numerator and denominator of the F -ratio are independent.
B. The observations represent random samples from the populations

being compared.
C. The underlying linear model is a random model.
D. The observations are drawn from normally distributed populations.
E. The variances of all the populations are equal.

2. If the data in an analysis of variance fail to satisfy the required assump-
tions, then the F-tables may suggest that the p-value is 0.05 when in fact
it is

A. (0.05)2

B. exactly 0.10
C. less than 0.05
D. greater than 0.05
E. either less than or greater than 0.05

3. An investigator randomly assigned eight patients to each of three differ-
ent diets to study their effects on body weight. The resulting data were
subjected to an analysis of variance. The F-test for the hypothesis that
the mean response was the same for the three diet groups has degrees
of freedom as follows:

A. numerator d.f. = 2, denominator d.f. = 8
B. numerator d.f. = 3, denominator d.f. = 7
C. numerator d.f. = 2, denominator d.f. = 21
D. numerator d.f. = 8, denominator d.f. = 24
E. numerator d.f. = 7, denominator d.f. = 21

4. Consider the six treatment groups A1B1, A1B2, A1B3, A2B1, A2B2, and
A2B3. Suppose the mean responses to these treatment combinations
are as follows:

B1 B2 B3

A1 10 30 40
A2 12 33 41
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The difference 33 − 30 = 3 is

A. the difference between simple effects of A at B2

B. the difference between main effects of A at B2

C. an interaction of A at B2

D. the simple effect of B2

E. the main effect of B2

5. Consider the six treatment groups A1B1, A1B2, A1B3, A2B1, A2B2, and
A2B3. Suppose the mean responses to these treatment combinations
are as follows:

B1 B2 B3

A1 21 31 34
A2 33 40 41

The average (33 + 40 + 41)/3 = 38 is called the

A. main effect of A1

B. main effect of A2

C. simple effect of A2 at B1, B2, and B3

D. interaction of A and B
E. error of A

6. An investigator studies the effect of three treatments denoted A1, A2,
and A3 on blood pressure in patients with hypertension.These three treat-
ments are the only ones of interest, so inferences will pertain only to A1,
A2, and A3. We say the effects of these treatments are

A. fixed
B. random
C. mixed
D. additive
E. iterative

7. A mixed model is one that has both

A. fixed effects and random effects
B. simple effects and main effects
C. interaction effects and main effects
D. interaction effects and fixed effects
E. interaction effects and random effects
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8. A health-management corporation has a series of 12 clinics with five staff
physicians at each clinic. The corporation wishes to evaluate the differ-
ences among their clinics and physicians in managing blood pressure in
hypertensive patients.Ten hypertensive patients were randomly assigned
to each of two randomly selected physicians within each of four randomly
selected clinics. An outline of the sources of variability, degrees of free-
dom, and expected mean squares in the analysis of variance resulting
from the study is as follows:

Source of Variability d.f. Expected Mean Square

Clinics 3 �2
R + 6�2

P|C + 20�2
C

Physicians within clinics 4 �2
R+10�2

P|C
Patients within physicians 72 �2

R

within clinics
Total 79

The appropriate denominator for the F-test of the hypothesis that the
clinic means are all the same is

A. the calculated mean square for clinics
B. the calculated mean square for physicians within clinics
C. the calculated mean square for patients within physicians within clinics
D. the calculated mean square for the total sample
E. none of the above

9. An experiment was conducted in which patients with chronic hyper-
tension were administered one of two doses of drug A (A1 or A2), in
combination with one of three doses of drug B (B1, B2 or B3). In all there
were six treatment groups. Forty-eight patients were randomly assigned
to these groups, eight patients to a group. An analysis of variance of dia-
stolic blood pressure after three weeks on treatment was carried out.The
following table outlines the basis for an appropriate ANOVA:

Source of Variability d.f. Expected Mean Square

Drug A 1 �2
R+24�2

A

Drug B 2 �2
R+16�2

B

Interaction 2 �2
R + 8�2

AB

Residual 42 �2
R

Total 47
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The appropriate denominator for the F -test of the hypothesis that the
main effects of drug A are equal is

A. the calculated mean square for drug A
B. the calculated mean square for drug B
C. the calculated interaction mean square
D. the calculated residual mean square
E. none of the above

10. Consider the four treatment groups A1B1, A1B2, A2B1 and A2B2. Suppose
the mean responses to these treatment combinations are as follows:

B1 B2

A1 50 52
A2 60 73

An estimate of the interaction effect between the factors A and B is

A. 2
B. 11
C. 13
D. 22
E. 26

11. Suppose treatment A has dose levels A1, A2, and A3, and treatment B has
dose levels B1 and B2, in an experiment with a completely randomized
design and a factorial arrangement of treatments. Further suppose that
the differences among the simple effects of A1, A2, and A3 are not the
same for the two levels of B. This phenomenon is an example of

A. fixed effects
B. random effects
C. mixed effects
D. main effects
E. interaction effects

12. An analysis of variance was carried out after transforming the data to a
logarithmic scale. One purpose of the transformation might have been to
remove

A. single effects
B. main effects
C. fixed effects
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D. random effects
E. interaction effects

13. In a study to investigate the effectiveness of an anticoagulant, 10 rats
are randomly assigned to each of two groups. The rats in the first group
receive an injection of the anticoagulant, while those in the second group
receive a control saline injection. Samples of blood are taken from each
rat before and after treatment and the coagulation time in minutes noted.
The following method might be appropriately used to test the hypothesis
that the mean coagulation time is not affected by treatment:

A. paired t -test
B. one-way analysis of variance of the pre-treatment values
C. the correlation between pre-treatment and post-treatment values
D. analysis of covariance
E. contingency table analysis

14. In performing an analysis of covariance, we assume

A. interaction effects are present
B. the paired t -test is appropriate
C. parallel lines on regressing the response variable on the covariate
D. categorical data provide efficient estimators of the slopes for the

regression lines
E. the covariate is a nominal variable

15. Analysis of covariance is often used in the statistical interpretation of
experimental data to

A. increase power
B. decrease interaction
C. eliminate mixed effects
D. decrease main effects
E. increase the slope of the regression line



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER TWELVE

Key Concepts

univariate analysis
multivariate analysis (MANOVA)
multivariate general linear models
discriminant analysis, discriminant

function
logistic, or logit transformation, logistic

regression
survival time, singly and progressively

censored data, survivorship function

hazard function, proportional hazards,
Cox’s regression model, life-table method,

Kaplan–Meier method
permutation test, randomization test,

Fisher’s exact test
resampling, bootstrap, jackknife,

cross-validation
construction data set, training data set,

validation data set





Some Specialized Techniques

SYMBOLS AND ABBREVIATIONS

S(t) survivorship function (cumulative survival rate)

We have presented in the previous chapters basic concepts that should serve as
building blocks for further study. These concepts have been illustrated by describing
some of the common statistical methods found in the scientific literature. It would,
however, be impossible to cover in a single book all the statistical techniques that are
used in genetic and epidemiologic research. In this chapter we briefly familiarize
you with some of the more specialized techniques of statistical analysis. Although the
choice of which techniques to include and which to exclude is somewhat arbitrary,
our aim has been to cover a few of the advanced methods of analysis that are more
frequently encountered in research articles.

MULTIVARIATE ANALYSIS

Interest often centers on the simultaneous analysis of several response variables
rather than a single response variable. Let us suppose, for example, that a study
is designed to determine the effect of a treatment or allele on the following vari-
ables: diastolic blood pressure, serum cholesterol, and body weight. In particular,
let us suppose that the purpose of the study is to compare the means of these
three response variables in a treated group to the corresponding means of these
three variables in a control group, or in a group of persons carrying a particu-
lar allele and a group not carrying that allele. If one focused on a single variable
(e.g., diastolic blood pressure), then one of the methods described earlier could
be used to analyze the data. All the methods we have described so far are uni-
variate methods, in that only one random response variable (variate) is involved.
(Sometimes multiple regression, in which there is more than one predictor vari-
able, is also called a multivariate method. This terminology, however, is incorrect
if there is only one response variable.) If, on the other hand, all three variables

Basic Biostatistics for Geneticists and Epidemiologists: A Practical Approach R. Elston, W. Johnson
c© 2008 John Wiley & Sons, Ltd
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are analyzed simultaneously as response variables, then the analysis is termed mul-
tivariate. For each of the univariate methods described earlier, there is an analogous
multivariate method. For example, the multivariate analogue of Student’s t-test for
comparing the means of two groups is called Hotelling’s T2-test, named after the
American statistician Harold Hotelling (1895–1973). Similarly, we can have mul-
tivariate regression analysis, multivariate analysis of variance (MANOVA), and
multivariate analysis of covariance. Earlier, we discussed longitudinal and repeated
measures data. These are special types of multivariate data and we must consider
this multivariate aspect of the data in the statistical analysis. A unified approach
to multivariate analysis for comparing group means is provided by multivariate
general linear models.

You may wonder what the advantage is of performing a multivariate analysis
rather than performing a set of univariate analyses. Why not, in our example, simply
perform three t-tests: one for diastolic blood pressure, one for serum cholesterol,
and one for body weight? Multivariate analysis has two advantages. First, it helps
overcome the problem that, as the number of statistical tests performed at a given
significance level increases, so does the probability (under H0) of finding at least
one significant result. Suppose there are 20 response variables and we perform
20 t-tests at the 5% significance level (i.e., we decide beforehand to declare a
significant finding if any one of the 20 p-values is less than 0.05). As discussed
in Chapter 8, if there are no pairwise differences between the means, by chance
alone we should expect one of the tests to yield a significant result. If, however,
we first perform a multivariate test, which takes account of the fact that 20 com-
parisons are being made, then we can appropriately control the overall probability
of a type I error to be, for example, 0.05. When we perform 20 t-tests each at
the 5% significance level, the overall probability of a type I error (i.e., the prob-
ability of rejecting the null hypothesis that all 20 pairs of means are equal when
in fact they are equal) is much larger than 0.05. We discussed in Chapter 8 how
we can use the Bonferroni method to obtain an upper bound for that probability,
or Šidák’s method when the tests are independent; multivariate tests take advant-
age of the fact that the various response variables are not independent to increase
power.

A second advantage of multivariate tests is that they are more sensitive
to detecting group differences that depend on certain relationships among the
response variables. This can best be seen by considering a simple situation in which
there are just two groups and two response variables, y1 and y2, illustrated graphic-
ally in Figure 12.1. Here we have graphed, for two samples of 10 study units each,
the values y1 and y2 observed on each study unit. It is clear from this scatter diagram
that the two groups are completely separate, and a multivariate test of these data
would show a highly significant difference between the two groups. But if we were
to perform a t-test on the 20 values of y1, or on the 20 values of y2, neither result
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y2

y1

Figure 12.1 Scatterplot of the variables y1 and y2 measured on the ten study units in
each of two groups, indicated • and •.

would be very significant because there is almost complete overlap between the
two groups on each variable singly.

DISCRIMINANT ANALYSIS

Let us consider the situation in which it is unknown to which of two groups or
populations a person belongs. For example, we may wish to know whether or not a
woman is a carrier of the sex-linked hemophilia gene and hence has a risk of bearing
a son with hemophilia. Suppose we have laboratory data available on the woman
and we wish to use the information to classify her. Using a procedure known as
discriminant analysis, it is possible to determine a mathematical function for this
purpose, from data on a set of previously classified women. Thus, we would obtain
two samples of women, one of women known to carry the disease allele (so-called
obligate carriers) and one of women known not to carry that allele. (If a woman
has two hemophiliac sons, for example, she is an obligate carrier; if she has no
relatives with hemophilia, on the other hand, we can be virtually certain she does
not carry the hemophilia allele.) A blood sample is taken from each woman and a
set of relevant measurements, such as clotting-factor levels, are determined. The
result of a discriminant analysis applied to these data is a discriminant function that
can be used to help classify a woman whose maternal uncle (but no other relative),
for example, has hemophilia. In the case of hemophilia A, if we let

y1 = log (clotting factor XIII coagulant activity level)

and

y2 = log (clotting factor XIII-related antigen level),
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the discriminant function derived from these two variables is (approximately)
3y1 − 2y2. If this function is applied to the 20 points plotted in Figure 12.1, for
example, the two groups are found to be distinct, with no overlapping of their
ranges.

Discriminant analysis can also be used to classify individuals into one of several
disease categories, based on vital signs, laboratory data, or both. There will usually
be errors associated with such classifications, and we try to develop discriminant
functions that will correctly classify individuals with a high probability. Because
we cannot know whether a particular individual is classified correctly, we often
estimate the probability of an individual belonging to each population. The higher
the probability associated with a person belonging to a particular disease category,
the more confidence we have that we can correctly classify that person.

LOGISTIC REGRESSION

In fitting a statistical model to a set of data, sometimes the response variable is
dichotomous, whereas the predictor variables are continuous, discrete, or both. In
the simplest situation, we would have one response and one predictor variable.
For example, the response variable may be success or failure after a treatment,
and we wish to model this response (the proportion of successes or failures) at
selected doses of some treatment. In slightly more complex situations, we may
want to model the proportion of failures (e.g., the proportion of a population with
disease) in terms of suspected risk factors such as age, weight, and blood pres-
sure. In cases such as these, the cumulative distributions tend to be S-shaped, or
tilted S-shaped, as in Figure 12.2. This characteristic shape arises because failures
often occur infrequently at low levels of the independent variable(s), then there is a
range in which the failure rate increases rapidly, and finally there is a range in which

x
0

1

Proportion
of

failures

Figure 12.2 Example of a curve depicting the cumulative proportion of failures as a
function of a predictor variable x.
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most of the failures have occurred and so additional failures occur less frequently
again.

A family of mathematical equations that has a shape resembling that of
Figure 12.2 is given by the equation

y = 1
1 + e−(β0+β1x)

or, equivalently,

y = eβ0+β1x

1 + eβ0+β1x
.

With further algebraic manipulation, this is the same as

y
1 − y

= eβ0+β1x

or, taking natural logarithms of both sides of this equation,

loge

[
y

1 − y

]
= β0 + β1x.

Thus, we have a transformation that converts the curve in Figure 12.2 into a straight
line. This transformation is called the logistic or logit transformation; that is, the
logistic transformation, or logit, of y is loge[y/(1 − y)]. This is the basis of a logistic
regression model, in which the logit of the response random variable Y (a proportion)
is regressed on the predictor variable x; the model is

loge

[
Y

1 − Y

]
= β0 + β1x + ε

where � is a random error. There may also be several predictor variables, in which
case the model is of the form:

loge

[
Y

1 − Y

]
= β0 + β1x1 + β2x2 + . . .+ βpxp + ε.

A variety of computer programs are available for obtaining maximum likeli-
hood estimates of the parameters (�0, �1, . . . , �p) of this model, and for testing
hypotheses about them using the likelihood ratio criterion. The use of logistic
regression models is fairly common in the medical literature, especially with Y
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representing the probability of disease, so that Y/(l − Y) gives the odds in favor of
disease. Thus the natural logarithm of the odds is estimated by the regression func-
tion b0 +b1x1 +b2x2 + . . .+bpxp, and the odds are estimated by eb0+b1x1+b2x2+...+bpxp.
Now suppose, for example, that x1 = 1 if there is exposure to some environmental
factor (or a particular allele is present), and x1 = 0 if there is no such exposure
(that allele is absent). Then the odds ratio for exposed (carriers) versus unexposed
(non-carriers) is estimated as

eb0+b1+b2x2+···+bpxp

eb0+b2x2+···+bpxp
= eb1 .

Thus b1 is the narural logarithm of the odds ratio for exposed versus unexposed
(carriers versus noncarriers) in this example. Recall that odds ratios are particularly
useful statistics for summarizing the results of case–control studies (Chapter 3). We
cannot estimate the probability of disease in such studies; but, by letting Y be the
proportion of cases in the study, logistic regression can be used to find the odds
ratios for several different kinds of exposures and/or genotypes (x1, x2, etc.). The
corresponding estimated regression function (i.e., b0 + b1x1 + b2x2 + . . . . + bpxp)
can also be used as a discriminant function to help classify future persons into one
of the two classes (which in this instance are ‘disease’ and ‘no disease’).

To illustrate, suppose a case–control study is conducted where cases are per-
sons with cardiovascular disease and controls are persons who do not have this
disease. Let Y = 1 for cases and Y = 0 for controls and consider the predictor vari-
ables: age in years, gender (female = 1, male = 0), blood pressure (normal = 0,
high = 1) body mass index (weight/height2 in kg/m2) and history of type 2 diabetes
(no=0, yes=1). A typical analysis of the logistic regression model for the data might
be as shown in Table 12.1. We see that the coefficients in the logistic regression
model are significantly different from 0 for age, gender, blood pressure and history
of type 2 diabetes, but not for body mass index. The odds ratios are correspondingly
significantly greater than 1 except for body mass index. For example, the odds ratio

Table 12.1 Logistic regression analysis of cardiovascular disease
Maximum likelihood analysis

Parameter d.f. Estimate SE Chi-square p-value

Intercept 1 −7.0906 0.7828 82.04 < 0.0001
Age 1 0.0846 0.0120 49.77 < 0.0001
Gender 1 0.3967 0.0748 28.14 < 0.0001
Blood pressure 1 0.3937 0.1027 14.70 0.0001
Body mass index 1 0.0027 0.0110 0.06 0.8049
History type 2 diabetes 1 0.2939 0.0817 12.95 0.0003
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Odds ratio analysis

Predictor Variable OR 95% CL

Age (years) 1.09 1.06 to 1.11
Gender (male vs female) 2.21 1.65 to 2.96
Blood pressure (high vs normal) 2.20 1.47 to 3.29
Body mass index (kg/m2) 1.00 0.98 to 1.02
History type 2 diabetes (yes vs no) 1.80 1.31 to 2.48

for persons with high blood pressure is 2.20 with 95% confidence limits 1.47 to 3.29.
Therefore, in this sample the odds of having cardiovascular disease is estimated to
be 2.2 times greater if a person has high blood pressure compared to a person with
normal blood pressure. Moreover, the odds ratio for age is 1.09, suggesting that the
odds ratio increases by 9% for every year a person’s age increases. Note that each
odds ratio is adjusted for other factors in the model.

ANALYSIS OF SURVIVAL TIMES

In some studies, especially clinical trials, the response variable of interest may be
the amount of time from some initial observation until the occurrence of an event,
such as recurrence of disease, death, or some other type of failure. This time from
initial observation until failure is called the survival time. Statistical analysis of a
group of survival times usually focuses on the probability of surviving a given length
of time, or on the mean or median survival time.

A distinguishing feature of survival data is the fact that the distribution of
survival times is often skewed and far from normal. Furthermore, the exact survival
times of some of the study units may be unknown. For example, a group of subjects
may all enter a study at the same time, but some may not have ‘failed’ by the end of
the study, or they may be lost to follow-up at some point in the study. In such cases
the survival times are said to be censored. If a study is conducted so that subjects are
observed until a pre-specified proportion (e.g., 60%) have failed, or if all subjects
are observed for a fixed period (e.g., 5 years) and some subjects have not failed by
the end of that period, the resulting survival times for the survivors are said to be
singly censored. In most clinical studies, however, patients are recruited into the
study over time, and each patient is observed for a different length of time. Then,
if some of the patients have not failed by the end of the study, the resulting survival
times are said to be progressively censored.

A distribution of survival times can be characterized by one of three functions:
(1) the survivorship function, (2) the probability density function, and (3) the hazard
function.
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The survivorship function S(t) is defined as the probability that a study unit
survives longer than time t; thus, if T is the random variable denoting survival time,

S(t) = P(T > t).

S(t) is also known as the cumulative survival rate, and the graph of S(t) is called the
survival curve (Figure 12.3). At any time t, S(t) gives the proportion still surviving
at time t. Recall that the cumulative distribution function of T is given by F(t) =
P(T ≤ t). Hence it follows that

F(t) = 1 − S(t).

The corresponding density function is the probability density function f (t) of the
survival time. Areas under this curve represent the probability of failure in intervals
of time.

t, years

S(t )S, proportion
surviving

Figure 12.3 Example of a survival curve.

The hazard function of survival time T is the density of failure at a particular
time, given that there has been survival until that time. The hazard function is also
known as the instantaneous failure rate, the force of mortality, or the conditional
failure rate. It can be thought of as the ‘instantaneous’ probability of failure at a
particular time given there has been survival until that time. Because time is a
continuous variable, however, it is a probability density. It is equal to f (t)/S(t).
In 1972 Sir David Cox, a British statistician, introduced a method of analyzing
survival times based on the assumption that the effect of each of the predictors
x1, x2, . . . , xp is to multiply the whole hazard function by a certain amount. The
underlying model is therefore called a proportional hazards model or sometimes
simply Cox’s regression model. Specifically, denoting the hazard function h(t), the
model can be written as
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h(t) = h0(t)eβ1x1+β2x2+...+βpxp

where h0(t) is the hazard when all the x variables equal zero. The regression coef-
ficients �1, �2, . . . , �p are estimated by a maximum likelihood method that does
not depend on the shape of h(t) or h0(t), and the estimates measure the effect
of each predictor on the hazard function. If, for example, x2 is the amount of a
particular food eaten, then the hazard function is multiplied by e�2 for each unit of
that food eaten; �2 > 0 would imply that the food has a harmful effect (increasing
the hazard), while �2 < 0 would imply a beneficial effect (decreasing the hazard).
Just as for logistic regression, there are computer programs for obtaining maximum
likelihood estimates of the parameters and for testing hypotheses about them, in
large samples, using the likelihood ratio criterion.

ESTIMATING SURVIVAL CURVES

We shall describe two methods of estimating survival curves: (1) the life-table
method and (2) the Kaplan–Meier method. In the life-table method, the survival
times are first grouped into fixed intervals such as months or years. Let ni be the
number of study units surviving at the beginning of the ith interval, di the number
of failures in the ith interval, and ci the number of censored survival times in the ith
interval. Then the probability that a study unit that has survived to the beginning
of the ith interval will survive through to the end of that interval is estimated as

si = ni − di − ci/2
ni − ci/2

.

(It is assumed that the censored individuals leave randomly throughout the interval,
so that on an average only half of them are present during the interval.) The overall
probability of surviving until the end of the kth interval is estimated as the product
of the probabilities of surviving through each of the first k intervals, that is,

s1s2 . . . sk.

The Kaplan–Meier method of estimating survival curves uses the exact failure
times rather than grouping the survival times into intervals. Denote the ranked times
of failure or censoring for the m subjects in a group by t1 < t2 <. . . . < ti <. . . . < tm.
Let ui be the number of units surviving at time ti, and fi the number that fail at
time ti. A unit with survival time censored at time ti is assumed to survive up to and
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including time ti. Then the probability that a study unit that has survived to time
ti−1 will survive to time ti is estimated as

qi = ui

ui + fi
.

As before, the overall probability of surviving to time tk is estimated as

q1q2 . . .qk.

Expressions are available for the standard deviations of each of these estimates of
the survival times.

To illustrate the computations for estimating Kaplan–Meier survival curves,
suppose that two interventions are investigated in a sample of 64 patients who are
suffering from a disease with a short survival expectancy. Persons were randomly
assigned to intervention A or intervention B so that m =32 patients are allocated to
each intervention. Further suppose the patients are followed until death, until lost
to follow-up or until the end of study after 3 years (36 months) of follow-up. The
time each patient was followed is shown for the first six events (months until patient

Table 12.2 First six events for each of the two intervention groups

(i) Intervention A
Months No. Left No. Died No. Censored Est. P(Survival)

0 32 0 0 1.0000
2 31 1 0 0.9688
5 30 1 0 0.9375
6 29 1 0 0.9063
7 28 1 0 0.8750
7 27 0 1 0.8750
8 26 1 0 0.8426

(ii) Intervention B
Months No, Left No. Died No. Censored Est. P(Survival)

0 32 0 0 1.0000
3 31 0 1 1.0000
7 30 1 0 0.9677

10 29 0 1 0.9677
11 28 1 0 0.9344
11 27 0 1 0.9344
14 26 1 0 0.8998
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died or survival time censored) in the first column of Table 12.2. For example, the
first patient in intervention group A died at 2 months, so

q1 = u1

u1 + f1
= 31

31 + 1
= 0.9688.

Similarly,

q2 = u2

u2 + f2
= 30

30 + 1
= 0.0.9677,

so that the estimated probability of survival at 5 months is q1q2 =0.9688×0.9677 =
0.9375. The estimated survival curves for all 36 months are shown in Figure 12.4; in
this figure, circles indicate the times that patients were censored.. On employing a
test for the equality of the two curves known as the log rank test, we find a chi-square
of 6.03 with 1 d.f. and hence p = 0.014, suggesting the survival profile is better with
intervention B.
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Figure 12.4 Kaplan–Meier survival curves for two intervention groups.
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PERMUTATION TESTS

Throughout this book, we have described methods of testing hypotheses that
assume particular sampling distributions for the test statistic when the null hypo-
thesis is true. These distributions can often be justified on the basis of having
large samples of independent observations. But if the samples are small and/or the
observations are not independent, these methods may not be valid. In Chapter 8
we described Bayesian methods that have been proposed to alleviate these prob-
lems, especially when a large number of tests are performed relative to the sample
size, but to use these methods we also need to assume prior distributions for all
the model parameters. In this section we describe a general frequentist method
of testing that makes no distributional assumptions, but rather depends on proper
experimental design. These tests are known as permutation tests, or randomization
tests, and can be employed to compare means, for example in most sampling plans
or experimental designs. Here we describe the method for completely randomized
and stratified designs, and for the special case of a 2 × 2 contingency table,

COMPLETELY RANDOMIZED DESIGN

For brevity, we introduce the basic idea for a completely randomized design with
only two treatment groups. Suppose subjects are randomly assigned to one of the
two treatment groups, denoted A and B, in such a manner that m subjects are
assigned to group A and n to group B. There are a total of

M =
(

m + n
m

)
= (m + n)!

m!n!
ways that this can be accomplished, and we say that there are M permutations of
the m + n subjects with m in group A and n in group B. Let Xi and Yi represent
the sample means of a variable of interest in groups A and B, respectively, and
let D = X − Y represent the difference in the means. Provided the distribution
of the random variable is the same in groups A and B, including their having the
same mean, we could exchange any of the observations in A for observations in B
without affecting the null sampling distribution of D. Now, let dobs = x − y denote
the difference in the means for the data observed on execution of the experiment.
Once the data are observed, we can calculate the M values of d corresponding to
each permutation of the observed sample data. If the subjects are in fact randomly
assigned to treatment groups, each permutation of the data is equally likely and
thus has a priori probability 1/M of being the experimental outcome for the given
set of data. Therefore, if we arrange the M values of d in order from smallest to
largest, we can produce an empirical cumulative probability distribution (known as
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the permutation distribution) from which we can determine the exact probability of
a random experiment resulting in a value of d as extreme as, or more extreme than,
the dobs found in the permutation corresponding to the experimental outcome.
Thus the p-value for the test is the proportion of the M values of d that are as
extreme as, or more extreme, than the observed dobs. When calculating the p-value
we must include both extreme tails for a two-sided alternative hypothesis and the
appropriate tail for one-sided alternative. Because we can find the exact probability
of observing specific outcomes under the null hypothesis, the permutation test is
often referred to as an exact test.

As a numerical example, consider an experiment conducted in a small pilot
study conducted in planning a larger clinical trial to investigate to two treatments,
A and B, aimed at lowering serum glucose levels as measured by hemoglobin A1c
(%). Eleven diabetic patients were available and they were randomly assigned to
receive either A or B, with six receiving A and five receiving B. Interest was in
testing the null hypothesis that the mean for A is equal to the mean for B against
the one-directional alternative that the mean for A is less than that for B. Suppose
the following HbA1c values were observed:

A: 6.0, 5.5, 5.3, 6.2, 6.7, 5.1

B: 7.3, 6.9, 7.6, 8.1, 6.5

Here, x = (6.0 + 5.5 + 5.3 + 6.2 + 6.7 + 5.1) /6 = 5.80, y = (7.3 + 6.9 + 7.6+
8.1 + 6.5) /5=7.28, and dobs =x−y=5.80−7.28=−1.48. For these data there are

M = 11!
6!5! = 462

permutations of the data possible, but to perform the test we need to identify only
those permutations of the data that lead to values of d as extreme as, or more
extreme than, dobs = −1.48 in the direction that favors the alternative hypothesis.
There is only one permutation that is more extreme in this context and that is
the one obtained by exchanging the 6.7 (the largest value) in group A for the 6.5
(the smallest value) in group B. There are therefore two permutations as or more
extreme, leading to p = 2/462 = 0.004329 and the conclusion that the mean was
significantly lower in the patients that received treatment A.

As the number of treatments and/or the total sample size increases, the num-
ber of permutations becomes larger and it becomes more difficult to identify the
extreme permutations. Fortunately, we can employ an asymptotically equivalent
test by sampling from the permutation distribution. We re-randomize the subjects
and their now known data to the treatment groups a large number of times to
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produce a very close approximation to the exact permutation distribution. Let R =
the number of replications produced this way – for example, we choose R =10,000.
For each replication, we calculate d and, in exactly the same way determine the
proportion of these replications as extreme as, or more extreme than, the dobs calcu-
lated from the original experimental results. This results in a close approximation
to the exact p-value so long as R × p is large enough. For example, if p = 0.05,
R = 1600 will result in a 95% confidence interval from about 0.04 to 0.06.

RANDOMIZED BLOCK (STRATIFIED) DESIGNS

In this section, we continue our discussion of permutation tests by again consider-
ing just two treatments, but in a randomized block design with only two subjects
per block, as in designs where each block is an individually matched pair of sub-
jects. The members of each pair are randomly assigned to either treatment A or
treatment B. Suppose m pairs of subjects are available for an experiment so that
m subjects are randomly assigned to receive A and m are randomly assigned to
receive B. In this setting there is a total of M = 2m ways of assigning the subjects to
treatments. Each of these permutations a priori is equally likely under the random-
ization plan if there is no difference in the effects of treatments A and B. As before,
we let X and Y denote the outcome random variable for subjects who receive A and
B, respectively. Note that for each pair we can calculate the difference x − y, and
then average these individual differences; or equivalently, we can average x and y
and then calculate the difference between the averages, as was done in the context
of a completely randomized design. Accordingly, we can produce the permuta-
tion distribution and determine exact p-values just as for a completely randomized
design. As before, when the number of permutations is large, we can sample from
the permutation distribution. The main difference required for a stratified design
is that the permutation must be performed within the strata – two permutations
within each block in the above example – with the result that the number of per-
mutations is different in the two cases. By permuting within strata we satisfy what
is known as the exchangeability requirement necessary for any permutation test
to be valid. Permutation tests will often increase the power of non-independent
genetic tests, for example to obtain genome-wide significance levels; but if there is
differential population stratification among the groups to be compared, identifying
the strata and performing the permutations within strata is required for validity.
On the other hand, because the permutation test tests the equality of the two or
more group distributions, not just their means, there is no need to identify the
strata if the stratification is the same in all the groups to be compared – though
doing so and preforming the permutations within strata would usually lead to a
more powerful test.
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FISHER’S EXACT TEST

Another version of the permutation test is known as Fisher’s exact test and is widely
used to analyze categorical data arranged in a 2 × 2 table with small numbers. We
illustrate Fisher’s exact test by assuming the response is binary and interest is in
comparing the proportions of subjects in two independent samples whose responses
can be tabulated in the same category. The data structure can be summarized as
in Table 12.3.

Table 12.3 Categorical data structure for comparing a binary
response in two independent samples

Treatment Group

Response A B Total

1 a b a + b
0 c d c + d
Total a + c b + d N

The null hypothesis is that the proportion of subjects in group A who respond
‘1’ is equal to the proportion in group B who respond ‘1’. The labeling of the
responses as 1 or 0 is completely arbitrary (the response can be success or fail,
yes or no, improved or did not improve, etc.) but it is useful in establishing a link
to our previous discussion of the permutation test. Thus, on recognizing that the
proportion who respond 1 is just the average of the 0s and 1s, x for group A and
y for group B, it is easy to see that Fisher’s exact test employs the same strategy
as that invoked in the permutation test for the equality of two means described
above. Although the notation is different, we calculate M, the number of ways the
N subjects can be assigned to the treatment groups, in the same way we did before;
that is, the N subjects can be assigned to groups A and B with a + c and b + d
subjects, respectively, in M possible ways, where

M =
(

N
a + c

)
= N!

(a + c)! (b + d
)! .

Once the data are collected, we could list the M permutations and for each calculate
d = x − y and determine from the permutation distribution the significance of dobs.

Fisher’s exact test assumes not only that the column totals a + c and b + d are
fixed, but also in addition that the row totals a + b and c + d are fixed. We then
recognize that once any one of the values a, b, c and d is known, the remaining
three are determined by the constraints imposed by the fixed margins assumption
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and this limits the number of distinct tables possible. It can be shown that the
permutation probability of each such table is equal to

(
a + b

a

)(
c + d

c

)

M
=

[(
a + b

)! (a + c)! (b + d
)! (c + d

)!]
N!a!b! c!d! ,

which is the hypergeometric probability distribution function, to be used to find
the exact null hypothesis probability of observing the specific set of frequencies
a, b c and d.

To illustrate, we consider the set of observed data that are summarized in
Table 12.4. The null hypothesis of interest was ‘the proportion of 1s with treatment
A is equal to the proportion of 1s with treatment B’; that is, H0: πA =πB. We noted
in Chapter 9 that if this hypothesis is true and the expected frequency in each cell
of the table is 5 or more, we could perform a chi-square test. The chi-square test
is not appropriate here because all the expected values are less than five. With
the margins fixed as observed, the number of subjects in group A who respond
1 could be a = 0, 1, . . . , or 8. Once a is determined, the other 3 observations are
also determined under the constraints of fixed margins. Hence, there are 9 distinct

Table 12.4 Illustrative data: Fisher’s exact test

Treatment Group

Response A B Total

1 7 2 9
0 1 7 8
Total 8 9 17

Table 12.5 Probability distribution for 2 × 2 tables with margins
fixed at the values shown in Table 12.4

Table a b πA πB Dj �j

1 0 9 0.000 1.000 −1.000 0.00004
2 1 8 0.125 0.889 −0.764 0.00296
3 2 7 0.250 0.778 −0.528 0.04146
4 3 6 0.375 0.667 −0.292 0.19350
5 4 5 0.500 0.556 −0.056 0.36281
6 5 4 0.625 0.444 +0.181 0.29025
7 6 3 0.750 0.333 +0.417 0.09675
8 7 2 0.875 0.222 +0.653 0.01185
9 8 1 1.000 0.111 +0.889 0.00037
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tables that could have been observed, one for each of the 9 possible values of
a. We calculate the exact probability of observing each possible table with the
margins fixed at the values shown in Table 12.4 using the above null hypothesis
probability for the corresponding table. These probabilities are given in Table 12.5.
We illustrate how this table is used to test the null hypothesis for each of three a
priori pre-specified research hypotheses, only one of which would be used in a given
experiment. We consider first the two one-sided alternative research hypotheses
πA >πB and πA < πB, then the two-sided alternative πA �=πB.

1. πA <πB. To obtain the p-value for this research hypothesis, we consider outcomes
that would be extreme in the sense that the alternative hypothesis would be
more likely than the null if the null is in fact false; here, such values would be
associated with larger estimated values of πA and so probabilities in the lower
part of Table 12.5. In Table 12.4, a = 7 and values as extreme or even more
extreme would be a = 7 or a = 8. The p-value for the outcome a = 7 would then
be p = 0.01185 + 0.00037 = 0.01222 and it would be appropriate to reject the
null hypothesis and conclude that πA > πB.

2. πA > πB. For this research hypothesis, outcomes that tend to refute the null
hypothesis are associated with small values of a and hence and the probabilities
in the upper part of Table 12.5. In Table 12.4, a=7 and values as extreme or even
more extreme would be a = 0, 1, 2, 3, 4, 5, 6 or 7. The p-value for would then be
p = 0.00004 + 0.00296 + . . . + 0.01185 = 0.98778 so it would be inappropriate
to reject the null hypothesis. We would conclude that the null hypothesis is
plausible in light of these data.

3. πA �= πB. Here, extreme outcomes in either direction tend to cast doubt on the
null hypothesis. We see that 0.00004+0.00296=0.00300<0.01222 so that a=0
or 1 are even more extreme in the opposite direction than a = 7 or 8. Therefore,
the two-sided p-value for the observed outcome would be 0.00300 + 0.01222 =
0.01522 and would lead to rejection of the null hypothesis.

RESAMPLING METHODS

A variety of methods have been proposed for making statistical inferences that
involve treating a sample of data as a ‘population’ and then repeatedly selecting
samples (resampling) from that population in order to estimate the sampling dis-
tribution or one or more parameters of interest. These methods do not require any
distributional assumptions, such as the data or estimators have an underlying nor-
mal distribution, and are therefore distribution-free. They are simple in concept
but can be tedious to implement in some applications. They are especially use-
ful in situations where we may be interested in a estimating or testing hypotheses
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about a parameter in an application where a theory has not been developed for
that purpose; or a theory has been developed but the resulting methods may not
have desirable statistical properties; or a theory has been developed but the res-
ulting computational formulas are complicated and difficult to use; or, in some
instances, where a usual ‘parametric’ estimation may be impossible. By resampling
a large number of subsamples from the original sample and estimating the para-
meters of interest by (known or intuitive) estimators from each subsample, we can
determine the sampling distribution of the estimators and investigate the accuracy,
precision and other properties of these estimators. Their main advantage is that they
provide robust estimates of standard errors and confidence limits for population
parameters.

BOOTSTRAP RESAMPLING

Bootstrap resampling is an approach to statistical inference that obtained its name
from the notion of leveraging an initial sample of data to gain information for making
inferences that would ordinarily require a much larger data resource, analogous to
‘pulling oneself up by one’s bootstraps’. Suppose we have a random sample of size n
from a population and we wish to use these data to estimate a population parameter,
complete with a 95% confidence interval. Bootstrap resampling or ‘bootstrapping’
involves taking B random replicate samples of the same size n from this original
sample of size n. However, we sample with replacement. In other words, when
forming each sample, after randomly selecting each observation it is put back into
the sample before randomly selecting the next observation. In this way we can
select samples that are the same size as the original sample without all the replicate
samples being identical, so that we have in a sense ‘pulled up’ more information
than first appeared to be available in the original sample. The number of replicate
samples is somewhat arbitrary, but B = 10,000 is often used and appears to provide
suitable results for most problems. We describe a simple use of bootstrapping to
give the basic idea, but keep in mind that there are many more complex applications
where the result is not known beforehand.

We first explain how bootstrapping can be used to estimate the bias of an
estimator. Recall that in Chapter 6 we said if the average of the sample estimates
for all possible samples equals the value of the parameter being estimated, we
say the estimator is unbiased; otherwise it is biased. The bias of an estimator is
the difference between the mean of the estimator, i.e. the mean of the estimator’s
distribution, and the parameter being estimated. We also stated in Chapter 6 that
if we used the sample size n as the divisor when estimating the population variance
σ 2, the estimator is biased by a factor (n − 1)/n. We could verify this result using
bootstrapping as follows. We first estimate the variance of the sample using the
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divisor n instead of n − 1. We then select B replicate samples with replacement
of size n from the original sample and again use the divisor n instead of n − 1 to
estimate the variance from each of these B bootstrap samples. If we now average
these B estimates, we find that this average is larger than the estimate obtained
(using the same divisor, n) from the original sample, by a factor close to (n − 1)/n
(when B is large). This means that the original estimate of the variance was too
small. If the bias of any estimate is not close to zero, we should correct the estimate
by subtracting the bias from it.

Once we have estimates of a parameter of interest from each of the B replicate
samples, we can plot these estimates as a histogram or a cumulative plot to char-
acterize the general properties of this sampling distribution. In particular, we can
find percentiles of this empirical distribution. For example, the 5th and 95th per-
centiles of this distribution would form a 90% confidence interval for the unknown
parameter.

JACKKNIFE RESAMPLING

The jackknife is another variation of resampling and is similar to bootstrapping,
with the main difference being in the way the subsamples are selected. Given a
sample of size n, the jackknife method is based upon n subsamples each of size
n − 1, where each subsample is obtained by leaving out one of the original sample
observations but no observation is left out of more than one subsample. These n
subsamples are then used exactly as the B subsamples were used in bootstrapping
to estimate bias and construct confidence intervals.

CROSS-VALIDATION

Cross-validation is a strategy that is often employed to investigate whether a spe-
cific statistical analysis that has been conducted using one set of data produces
confirmatory results when it is applied to other, independent sets of data. Rather
than conduct completely independent studies for this purpose, a popular practice
in investigations that are sufficiently large is to separate the original data set into
two or more independent subsets and then replicate or otherwise ‘test’ the analysis
in the different subsets. Ideally, the original data would be randomly allocated to
the subsets.

In discriminant analysis, for example, one criterion used to evaluate the ability
of the estimated discriminant function to reliably classify individuals into one of the
two or more populations is to use the estimated function to classify subjects whose
population status is known and then tabulate the percentage classified correctly
for each population. But if we do this using the same population samples that were
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used to construct the discriminant function in the first place, the estimated function
is, in a sense, ‘drawn to’ the data used in its construction and, therefore tends to
perform better than it would if used to classify the individuals in an independent
sample. To cross-validate, we could randomly divide the original data set into two
subsets and use one subset to construct the discriminant function and the second to
evaluate its performance. The data set used to construct the function is sometimes
referred to as the training data set and that used for the evaluation is sometimes
called the validation data set. Further strategies may be employed analogous to
bootstrapping and jackknifing. For example we could repeat the process many times
so that different subsets are selected as construction data sets. An investigation of
the stability of the estimated function as different construction sets are used would
be informative about the general applicability of the function in practice.

SUMMARY

1. Multivariate analysis is the simultaneous analysis of several dependent variables.
It allows for appropriate control of the probability of a type I error when many
dependent variables are involved; and it can sometimes detect group differ-
ences that are not obvious when the variables are examined individually. Every
univariate method of analysis has a multivariate analogue.

2. The purpose of discriminant analysis is to find a function of several variables that
can help classify a study unit as coming from a particular population.

3. Logistic regression is used to model a proportion of a population (e.g., the propor-
tion with a disease), or a probability, as a function of one or more independent
variables. The logistic transformation changes a tilted S-shaped curve into a
straight line. The estimated regression coefficients can be interpreted as the
logarithms of odds ratios. The estimated regression function can also be used as
a discriminant function (e.g., to help classify persons as having a disease or not).

4. Survival analysis is used when the dependent variable is a survival time (i.e., the
time to a well-defined event, such as death). The distribution of survival times,
which is usually skewed, may be characterized by a probability density function, a
survivorship function (the complement of the cumulative distribution function),
or a hazard function.

5. The hazard function gives the density of failure at a particular time, given there
has been survival up to that time. In the proportional hazards model (Cox’s
regression model) it is assumed that the effect of each independent variable is to
cause the whole hazard function to be increased or decreased multiplicatively.
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6. Survival data are usually censored either singly (if every unit has been observed
for the same amount of time) or progressively (if the units have been observed
for different lengths of time). Two methods of estimating survival curves (that
allow for censoring) are the life-table method and the Kaplan–Meier method.

7. Permutation tests rely on appropriate randomization when a study is conducted
to obtain exact significance levels; when applied to nonrandomized studies they
assume exchangeability under the null hypothesis of the data being permuted.
Fisher’s exact test permutes the data in a contingency table in such a way that
the marginal totals remain the same.

8. Bootstrap samples are obtained from a given sample by sampling with replace-
ment. A large number of such samples can be used to estimate empirically the
sampling distribution of any statistic. The jackknife creates n samples of size
n − 1 from a sample of size n by leaving out each of the observations one at a
time. Cross-validation divides the original data set into two or more independent
subsets so that independent subsets can be used to perform and evaluate the
analysis.

FURTHER READING

Everitt, B.S. (1989) Statistical Methods for Medical Investigations. Oxford University Press,
New York. (This book gives a good overview of some of the topics in this chapter. Only
a limited mathematical background is required to understand the material.)

Kleinbaum, D.G., Kupper, L.L., Nizam, A., and Muller, K.E. (2008) Applied Regression
and Other Multivariable Methods, 4th edn. Duxbury, Pacific Grove, CA. (This book
gives some good epidemiological examples of logistic regression analysis. It requires
only a limited mathematical background to read.)

PROBLEMS

1. An analysis is carried out to study the effects of three treatments on
total serum cholesterol in patients with elevated cholesterol levels. The
statistical model underlying the analysis included age of the patient as a
predictor variable. The resulting analysis is called

A. analysis of covariance
B. multivariate analysis
C. discriminant analysis
D. logistic regression analysis
E. survival analysis
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2. An experiment was conducted in which patients were randomly assigned
to either an active treatment or a placebo. After 3 months of treat-
ment, data were obtained for four variables: total serum cholesterol,
serum triglyceride, systolic blood pressure, and diastolic blood pressure.
A statistical analysis was carried out to test the null hypothesis that the
treatment had no effect on any of the four variables.The resulting analysis
is called

A. univariate analysis
B. discriminant analysis
C. logistic regression analysis
D. survival analysis
E. multivariate analysis

3. An investigator studied two groups of patients: one group with confirmed
coronary heart disease and a second in which overt coronary heart dis-
ease was not present.Total serum cholesterol, serum triglyceride, systolic
blood pressure, and diastolic blood pressure were determined for each
patient. The investigator wished to derive from these data a mathem-
atical function that would help decide whether a patient with unknown
coronary heart disease status, but on whom these four variables had
been determined, has coronary heart disease. An appropriate statistical
method for doing this is

A. univariate analysis
B. discriminant analysis
C. survival analysis
D. analysis of variance
E. analysis of covariance

4. Which of the following is an advantage of multivariate analysis?

A. The computations for it are simpler.
B. It requires fewer assumptions.
C. It allows for proper control of the type I error when tests are performed

on many response variables.
D. It avoids the requirement of randomization.
E. It always provides a more powerful test than a set of separate

univariate analyses.

5. An investigator is studying the probability of disease in relation to several
suspected risk-factor variables. A plot of the proportions with disease in
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various categories of each of the risk-factor variables indicates that each
of the cumulative distributions is shaped like a tilted S.This suggests that
the investigator should consider a

A. univariate analysis
B. discriminant analysis
C. analysis of covariance
D. logistic regression analysis
E. none of the above

6. An investigator reported that the data from a study were analyzed using
the Kaplan–Meier method. The investigator was most likely studying

A. multivariate data
B. survival data
C. discrete data
D. uncensored data
E. none of the above

7. An investigator wishes to estimate the instantaneous probability that a
patient will die, given that the patient has survived a given amount of
time since an operation. In other words, the investigator is interested in
estimating the following function of time since the operation

A. probability density function
B. survivorship function
C. hazard function
D. cumulative distribution function
E. none of the above

8. A study of survival times of patients receiving coronary bypass operations
is terminated while some of the patients are still surviving. For purposes
of analysis, the survival times of these patients are said to be

A. discrete
B. multivariate
C. censored
D. terminated
E. none of the above

9. A researcher wishes to develop a statistical model to predict serum cho-
lesterol levels based on a knowledge of five measures of dietary intake.
The method for developing such a model can be described as

A. multiple regression analysis
B. multivariate analysis
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C. discriminant analysis
D. analysis by Cox’s regression model
E. survival analysis

10. An analysis is performed in which the proportion of persons with a disease
in a group is divided by the proportion without the disease. A multiple
regression analysis is carried out on the logarithm of the resulting ratio.
This is an example of a general method known as

A. correlation analysis
B. multivariate analysis
C. survival analysis
D. logistic regression analysis
E. censored data analysis

11. A statistician is faced with the analysis of a set of data comprising
measurements of three continuous dependent variables, observed in
an experiment that used a factorial arrangement of treatments in a
completely randomized design. Based on this information, the most
appropriate method of analysis is

A. discriminant analysis
B. paired t -test
C. multivariate analysis of variance
D. survival analysis
E. proportional hazard function analysis

12. Cox’s proportional hazards model is used to investigate relationships
between survival time and a set of

A. discriminant functions
B. percentiles
C. prognostic factors
D. censored data
E. cumulative distribution functions

13. All the following are multivariate statistical techniques except

A. Hotelling’s T 2-test
B. MANOVA
C. discriminant analysis
D. Student’s t -test
E. multivariate general linear models
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14. Subjects are recruited into a study over time as they come out of intensive
care from a particular operation, and the study is terminated after 30%
of the subjects have relapsed. The survival time to relapse is said to be

A. a logistic regression
B. progressively censored
C. missing
D. a maximum likelihood estimate
E. multivariate

15. A randomized, double-blind clinical trial was conducted to study the effect
of a drug for lowering blood pressure versus a placebo control. The
response variables of interest were systolic and diastolic blood pressure.
Based on this information, the statistical analysis requires a technique
appropriate for

A. data with missing endpoints
B. censored data
C. multivariate response
D. categorical response
E. noncompliance
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Guides to a Critical Evaluation
of Published Reports

In reading a report published in the literature, one often begins by reading the
abstract or summary. While this step is important in that it quickly indicates whether
the article is really of interest, its role must be kept in perspective. You must not yield
to the temptation of accepting conclusions from the summary without appraising
the merit and validity of the study itself. You must read the article critically before
accepting its conclusions as being relevant to your research. Experience will improve
your ability to evaluate research reported in the literature, but that ability will be
best utilized if you approach your reading with a definite plan in mind. A wide
variety of procedures are used to conduct, analyze, and report research findings,
and so it is impossible to give a single set of hard and fast rules for evaluating all
such reports. We have nevertheless compiled a few guidelines that you should find
helpful to keep in mind as you read the literature.

THE RESEARCH HYPOTHESIS

A first step in reviewing any article is to identify the research hypothesis. Why was
this research performed? Does it have relevance to you? Is there any practical or
scientific merit to it? If not, there is no need to read any further.

VARIABLES STUDIED

When you have identified the research hypothesis, and before you read the report in
detail, ask yourself what variables would shed light on the research hypothesis. Next,
identify the variables included in the report. Which are the response variables?
Which are the predictor variables? Are these variables relevant to the research
hypothesis? Compare your list of variables with those included in the report. Were
important – possibly confounding – variables overlooked? Was adequate informa-
tion collected on all relevant concomitant variables? Age, race, and gender are three

Basic Biostatistics for Geneticists and Epidemiologists: A Practical Approach R. Elston, W. Johnson
c© 2008 John Wiley & Sons, Ltd
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important variables in many human studies. Ethnic origin, geographic location, and
socioeconomic status are other variables that may be important.

The methods used to obtain the data are another important consideration.
Were state-of-the-art clinical or laboratory techniques used? Do these methods
produce precise measurements? The scale of measurement has an impact on the
choice of statistical hypotheses to be tested and statistical methods for testing these
hypotheses. Hence the scale of measurement used for recording each variable
should be identified; some scales may be nominal, some ordinal, and some interval.

THE STUDY DESIGN

It is imperative to identify the study design because the appropriate methods of
analysis are determined by it. Is the study experimental or observational? What are
the study units and how were they selected? Are they a random sample, or were
they chosen merely because it was convenient to study these particular units? What
was the target population? How does it compare with the study population? If, as
is so often the case in experimental studies, a convenient (rather than a random)
sample of study units was used, it should be described in sufficient detail for you
to have some feel for how general any of the conclusions are. If the study units are
patients with some disease at a particular hospital, for example, you must decide
how representative these patients are. Examine the inclusion and exclusion criteria
for entry into the study. Could the fact that these are patients at that particular
hospital somehow make them unrepresentative? For example, does that hospital
specialize in the more severe cases? Do geographic location or climatic conditions
have an effect? In other words, can you reasonably use the results of this study to
guide you in your own work.

After the study units were selected, how was the study conducted? At what
point was randomization used? Was an adequate control group included? Was
double-blinding used to control observer bias?

SAMPLE SIZE

The greater the number of study units in an investigation, the more confident we
can be of the results. Findings based on one or two subjects cannot be expected
to be typical of large populations. The sample size must be large enough for the
results to be reliably generalized. Statistical tests used to declare results significant
or not significant depend upon the sample size. The larger the sample size, the
more powerful the test and the more sensitive the test to population differences.
Hence, if the sample size is enormous, even trivial population differences could
be declared significant. In a small sample, on the other hand, a large difference
may be nonsignificant. Especially in the case of a study that reports no significant
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differences, it is necessary to determine how large a difference could reasonably
have been detected by the sample size used. A good study that reports negative
results will also quote the power of the statistical tests used. There are several
websites that enable the calculation of appropriate sample sizes, e.g.

http://www.protocol-online.org/cgi-bin/prot/view_cache.cgi?ID=3864
http://www.sph.umich.edu/csg/abecasis/cats/
http://pngu.mgh.harvard.edu/∼purcell/gpc/

COMPLETENESS OF THE DATA

Clinical studies invariably suffer from the problem that some patients have missing
data for one reason or another. If an unusually large number of study units, say
more than 20%, have a significant amount of incomplete data, then the credibility
of the results should be questioned. Be careful of reports in which a portion of
the data have been discarded as outliers because of gross errors or other unusual
circumstances. If an investigator discards those data that do not support the research
hypothesis, the scientific objectivity is lost. A good study will include all the data
available in the various analyses performed.

APPROPRIATE DESCRIPTIVE STATISTICS

An overview of the findings of a study can often be gleaned by scanning the tables
and graphs. Be watchful, however, that the tables or graphs are not misleading.
Distinguish between the sample standard deviation and the standard error of an
estimated parameter. If it is not reported, calculate the coefficient of variation
for some of the important variables. If the relative variability is large (e.g., if the
coefficient of variation is greater than 30%), then important population differences
may be obscured by the ‘noise’ in the data. Be sure you understand what the
numbers in the tables represent and exactly what is graphed. It sometimes helps
(especially in a poorly written report) to reconcile numbers in the tables and graphs
with numbers in the text.

APPROPRIATE STATISTICAL METHODS
FOR INFERENCES

The names of statistical tests used in the analysis, such as Student’s t-test, paired
t-test, analysis of variance, multiple regression analysis, and so forth, should be
stated in the methods section of the report. Be wary of reports that state p-values
without indicating the specific method used to analyze the data. In each case,



324 BASIC BIOSTATISTICS FOR GENETICISTS AND EPIDEMIOLOGISTS

identify the specific null hypothesis that is being tested. Try to determine if the
statistical methods used are appropriate for the study design, scale of measurement,
etc. If the method of analysis is unfamiliar to you, consult a statistician. Each method
requires certain assumptions of the data, such as independent samples, random
samples, normal distributions, or homogeneous variances. Gross violations of these
assumptions may bias the analysis. The report of a careful analysis will justify the
use of each statistical test used, should there be any doubt. Remember that a
p-value represents the chance that a difference in the sample data is the result
of random variation, when in fact there is no difference in the populations from
which the samples came. A p-value of 0.05 tells us there is a 5% chance that the
observed difference (or a more extreme difference) could arise by chance if the
null hypothesis is true. Suppose three independent statistical tests are carried out.
If in each case the null hypothesis is true, the possibility that at least one of the tests
results in significance at the 5% level is about 0.14 (= 1 − (1 − 0.05)3). If the three
tests are not independent, then the probability is somewhere between 0.05 and
0.14. If c comparisons are made, independent or not, if we want to correct a quoted
nominal p-value, p∗ , for the fact that c statistical tests have been performed, this can
be done conservatively by multiplying it by c; we can be sure that the appropriate
p-value is less than cp∗.

LOGIC OF THE CONCLUSIONS

Above all, remember that there is no substitute for evaluating the logic of the con-
clusions. A report that concludes it is safer to drive at high speeds because relatively
few deaths from automobile accidents occur at speeds in excess of 100 miles per
hour is clearly absurd. The frequency of deaths occurring at speeds in excess of
100 miles per hour needs to be related to the number of cars driven over 100 miles
per hour, and this compared with some similar fraction for cars driven at slower
speeds. Equally absurd conclusions, however, can be found in many research reports
because improper – or no – comparisons are made. Always be on your guard against
this type of fallacy; it is more common than you may suspect.

META-ANALYSIS

Finally, you should be aware of a special type of report, which is more and more
commonly published in the health-care literature, called a meta-analysis. This refers
to the statistical analysis of information from a series of studies carried out for the
same general purpose by different investigators or, in some instances, by the same
investigators at different times. The aim of a meta-analysis is to synthesize the
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findings from different sources into an overall interpretation to guide practitioners.
Thus, a meta-analysis attempts to combine all the available information on a given
topic by pooling the results from separate studies.

From a purely statistical point of view, the most obvious benefit of a meta-
analysis is that it effectively increases the sample size and, therefore, the power
of the analysis to detect important group differences that may go undetected in
small individual studies. The increased sample size will also lead to more precise
estimates, and, because each study will have been performed under slightly dif-
ferent conditions or in somewhat different populations, a meta-analysis can give
evidence for the generalizability of a particular result. However, the results of a
series of investigations of a particular topic may differ, and we shall see that this
may present either an opportunity or some difficulty in the overall interpretation.
The combined analysis should include a critical evaluation of the design, analysis,
and interpretation of the individual studies that are summarized. The subjects in
the different studies may be heterogeneous, treatments may vary in dosage and
compliance, and experimental skills and techniques may differ.

A meta-analysis begins with an effort to identify and obtain information on
all studies relevant to the topic being investigated. The extent to which this can
be done depends on the methods we use to search for published and unpublished
studies and on our ability to identify clearly the focus of each candidate study. Three
types of selection bias may occur. Reporting bias occurs when investigators fail to
report results – for example, because they did not lead to statistical significance.
Publishing bias occurs when journal editors decline to publish studies, either in
whole or in part, because of lack of statistical significance. Retrieval bias occurs
when the investigator conducting the meta-analysis fails to retrieve all the studies
relevant to the topic of interest.

Any meta-analysis is necessarily limited by what is available in the studies
retrieved. Sometimes individual investigators may be willing to share additional
aspects of data when published results are lacking in detail. Studies may differ
in design, quality, outcome measure, or population studied. They may vary from
blinded, randomized, controlled trials to trials that do not use blinding, randomiz-
ation, or controls. Criteria for including studies in a meta-analysis should be well
defined before the search for candidate studies begins.

Studies done at different times or by different investigators are often taken to
be statistically independent. However, although working separately, investigators
of a specific topic may have similar backgrounds and prior beliefs, communicate
frequently with each other, and modify later studies on the basis of earlier outcomes.
Thus a meta-analysis should investigate time, location, and investigator effects on
the outcome measure.

Before the results of studies are combined, there must be some assessment of
the homogeneity of the results. It is expected that the results of different studies
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will vary somewhat, but for investigations that are essentially similar, heterogeneity
in the results must decrease our confidence in any conclusions. An appropriate
meta-analysis will then require special statistical techniques to reflect this hetero-
geneity, by quoting a larger standard error for any estimates of how well a treatment
performs. Alternatively, it may be that variation in outcomes across studies is the
result of differences in treatment protocols; in this situation an opportunity may
exist to determine the best treatment regimen.

Once it has been decided to combine the results of several studies to obtain
a single overall result, it is necessary to choose whether to weight each study the
same or differently. Some attempts have been made to weight studies by their
relative quality, but this is subjective and very difficult to quantify reliably. Another
approach is to conduct separate analyses for groups of studies of similar quality.
Often, the best approach is to weight the studies according to sample size, with the
larger studies weighted more heavily than the smaller ones. A good meta-analysis
will use more than one weighting scheme, to be sure that the resulting tests and
estimates are reasonably robust to which particular weighting scheme is chosen.

We have already seen a simple method of combining studies when we wish to
perform an overall test of a null hypothesis; this is the method of combining p-values
discussed in Chapter 9. Other methods are available and are discussed in the addi-
tional readings suggested at the end of this chapter. Analysis of variance techniques
are often used to obtain pooled estimates, and these are similarly discussed in the
additional reading. The important thing to remember is that if there is heterogen-
eity among studies, as indicated by a large interaction between treatments and the
different studies, then this source of variation must be included in the standard
error when computing an overall confidence interval for the treatment effect.

Finally, a concept often used in meta-analysis is that of effect size. This is
defined for each candidate study as the estimated difference in mean outcome
between those treated and the controls, divided by the estimated control standard
deviation. This is often used to combine the effects of studies that measure different
outcomes, such as might result from the use of different measuring instruments.
Those studies using instruments that have larger measurement variability thus have
less impact than those studies using more precise instruments.

SUMMARY

1. Do not accept conclusions solely on the basis of the abstract or summary of a
published report.

2. Once you have determined the research hypothesis, determine whether all
important relevant variables were studied, and whether they were studied
appropriately.



GUIDES TO A CRITICAL EVALUATION OF PUBLISHED REPORTS 327

3. Identify the study design and the study population to determine the relevance
of the results.

4. Take account of the sample size and the completeness of the data, especially if
the study reports that no significant differences were found.

5. Be sure you understand what the numbers in the text and tables represent, and
what is graphed.

6. Try to determine if the statistical methods used are appropriate. If multiple
significance tests are performed, multiply each p-value by the number of tests
performed to obtain an upper bound for the overall significance level.

7. When reading a meta-analysis, note what steps were taken to reduce selection
bias – reporting bias, publishing bias, and retrieval bias.

8. A meta-analysis must assess the homogeneity of the studies it includes. Criteria
for inclusion should have been defined prior to beginning the search for
candidate studies.

9. A meta-analysis can result in increased power, precision, and generalizability.
But it should be demonstrated that the results are robust and do not depend
critically on the particular weighting scheme used.

10. The effect size of a study – treatment average minus control average, divided
by control standard deviation – is used to pool the results of studies that differ
in measurement variability.

11. Whenever you read a report, whether a single study or a meta-analysis, ask
yourself if the conclusions make sense.

FURTHER READING

Haines, S.J. (1981) Six statistical suggestions for surgeons. Neurosurgery 9: 414–417. (Some
basic principles are given for interpreting statistical analyses in the medical literature.
Catchy subheadings make this article enjoyable to read.)

Glantz, S.A. (1980) Biostatistics: How to detect, correct and prevent errors in the medical
literature. Circulation 61: 1–7. (This article was referred to in Chapter 1; now is the
time to read it.)

National Research Council Committee on Applied and Theoretical Statistics (1992) Com-
bining Information: Statistical Issues and Opportunities for Research. Washington,
DC: National Academy Press. (This book contains a comprehensive overview of the
methods of meta-analysis, together with examples from the health-care field.)
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Schmidt, J.E., Koch, G.G., and LaVange, L.M. (1991) An overview of statistical issues and
methods of meta-analysis. Journal of Biopharmaceutical Statistics 1(1): 103–120. (This
is a good introduction to the various statistical strategies used in meta-analysis.)

PROBLEMS

1. Read articles in your own area of interest critically, following the guidelines
of this chapter.

2. Read and critique the design and analysis aspects of the studies in the
following two brief papers:

Gash, A., and Karliner, J.S. (1978) No effect of transcendental meditation
on left ventricular function. Annals of Internal Medicine 88: 215–216.

Michaels, R.M., Nashel, O.J., Leonard, A., Sliwinski, A.J., and Oerbes, S.J.
(1982) Weekly intravenous methotrexate in the treatment of rheumatoid
arthritis. Arthritis and Rheumatism 25: 339–341.



EPILOGUE

This book is different from many other books on statistics in that many detailed
calculations and formulas have been excluded from the body of the text if they are
not helpful in understanding the basic concepts involved. We have not stressed
the details of calculating a regression line, for example, because the necessary
calculations give little insight into the meaning of the estimates calculated. We
have, however, included details of those calculations that will give the reader a
better feel for the underlying concepts. Thus we have carefully explained how to
calculate a sample standard deviation and a sample correlation coefficient, because
these are cases in which going through the actual calculations will give the reader
a better feel for what the estimates measure.

This book is also different from many introductory books in that it includes
some topics that are usually covered only in mathematically more sophisticated
texts. We have included, for example, the difference between estimates and estim-
ators, maximum likelihood estimation, the likelihood ratio criterion, bootstrapping
and random effect models in the analysis of variance. We have described both
hypothesis testing, a procedure for making a decision between two hypotheses, as
is usually done, and significance testing, a means of quantifying disbelief in the null
hypothesis by determining a p-value. We have also included material on Bayesian
and other methods that are being used more and more in genetics and epidemiology.
This book did not attempt to go into details of the many new statistical methods that
have been developed for genetic epidemiology studies. However, now that you have
read this book, you should have a basic understanding of the principles underlying
the statistical methods used, and you should be in a good position to learn about
many more that you may come across. Statistical methods are becoming more and
more sophisticated every day. It would be impossible to cover in a book this size all
the various statistical tests used in genetics and epidemiology. If a report you are
reading refers to a particular statistical method you do not know about, consult a
more advanced book or seek the help of a statistician who can explain the essentials
of the method in simple terms.

Basic Biostatistics for Geneticists and Epidemiologists: A Practical Approach R. Elston, W. Johnson
c© 2008 John Wiley & Sons, Ltd
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If you need to use some of the simpler statistical methods, you may well be
able to do so yourself with the help of this and/or other statistical textbooks. One
need not always be a surgeon to remove a splinter. But, just as you would entrust
major surgery to a specialist, so should you consult a competent statistician for major
statistical work. Similarly, just as you can expect the surgeon to explain the surgery
that will be performed, so can you expect the statistician to explain the statistical
analysis that will be performed. You do not need the gory details, but you should
understand the essentials. Of course there is nothing to stop you from learning more
and perhaps becoming one day yourself a competent genetic or epidemiological
statistician, should you so desire. The purpose of our book, however, has been
merely to help you understand the statistical principles. If, in addition, this has the
ultimate effect of upgrading the quality of statistical usage in your area of interest,
we shall have been more than repaid for our efforts.



REVIEW PROBLEMS

1. Statistics is used in research

A. to make rational inferences
B. to quantify uncertainty
C. to summarize the results of experiments
D. all of the above
E. none of the above

2. The following are steps in the scientific method – the never-ending circle of
refining our knowledge about the universe:

(a) test a hypothesis by experiment
(b) formulate a hypothesis
(c) retain or reject a hypothesis
(d) observe

The order of these steps should be

A. dcba
B. cbda
C. adbc
D. abcd
E. dbac

3. You wish to conduct a clinical trial to compare two drugs in the treatment of a
disease, and decide to enlist the help of a statistician. What is the best time to
initiate contact with the statistician?

A. Before you have decided which two drug regimens to use, so that the
statistician can help decide on what is medically appropriate

B. After you have decided on what drug regimens to use, but before you decide
on the sample of patients to receive them, so that the statistician can help
design the trial

Basic Biostatistics for Geneticists and Epidemiologists: A Practical Approach R. Elston, W. Johnson
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C. After you have decided on the sample of patients, but before you actually
conduct the trial, so that the statistician can help organize the data

D. After the data have been collected, but before analyzing the data, so that
the statistician can be responsible for the data analysis

E. After the data are analyzed, but before the results are submitted for public-
ation, so that the statistician can verify that an appropriate statistical analysis
has been performed

4. The logic of inductive reasoning is an aspect of statistics that is used

A. to prove mathematical theorems
B. to make rational inferences about what happens in general
C. to deduce specific results from general laws
D. all of the above
E. none of the above

5. A physician develops a diagnostic test that is positive for 95% of the patients
who have the disease and for 10% of the patients who do not have the disease.
Of the patients tested, 20% have the disease. If the patient’s test is positive, the
probability a patient has the disease is approximately

A. 0.10
B. 0.30
C. 0.50
D. 0.70
E. 0.90

6. A 99% confidence interval implies that

A. the probability the given interval contains the true parameter is 0.99
B. the probability that 99% of the observations are in the interval is 0.99
C. on average, 99 out of 100 similarly constructed intervals would contain the

true parameter
D. the probability the given interval does not contain the true parameter is 0.99
E. there is a 1% chance the hypothesis is false

7. An investigator collects diastolic blood pressure levels on a group of patients.
He divides his scale of measurement into intervals of 5 mmHg (70–74,
75–79, 80–84 mmHg, etc.). The investigator counts the number of patients
with diastolic blood pressures in each interval. If the investigator were to plot
the frequency of blood pressure levels in each interval, he would probably
choose the following type of graph:

A. histogram
B. scatter diagram
C. regression line
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D. bar graph
E. correlation coefficient

8. The figure below depicts a distribution that is

A. symmetric
B. unimodal
C. leptokurtic
D. positively skewed

E. negatively skewed

9. An investigator states that the correlation between two variables is not statistic-
ally significant (r = 0.07). Which of the following conclusions is appropriate?

A. 0.07 should be quoted as the significance level.
B. 0.07 indicates a strong linear association between the two variables.
C. For every unit of change in one variable, the other variable increases by

0.07 units.
D. High values of one variable tend to be associated with low values of the

other variable.
E. Any association between the two variables does not appear to be linear.

10. Serum cholesterol levels in a group of young adults were found to be approx-
imately normally distributed with mean 170 mg/dl and standard deviation
8 mg/ dl. Which of the following intervals includes approximately 95% of serum
cholesterol levels in this group?

A. 160–180 mg/dl
B. 162–178 mg/dl
C. 150–190 mg/dl
D. 154–186 mg/dl
E. 140–200 mg/dl

11. The standard deviation of a population is about 25. The standard error of the
mean of a random sample of nine observations is about

A. 3
B. 8
C. 75
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D. 225
E. 625

12. A difference is declared significant at the 5% significance level. This implies
that

A. the difference is significant at the 1% level
B. there is a 95% probability that the difference is attributable to sampling

variability
C. the difference is significant at the 10% level
D. the probability is 95% that the true difference is greater than zero
E. there is a 5% probability that there is no difference

13. An estimator that on average gives the same value as the parameter being
estimated is said to be

A. minimum variance
B. maximum likelihood
C. efficient
D. unbiased
E. symmetric

14. An investigator compares two treatments, A and B, and finds that the difference
in responses for these treatments is not statistically significant (p = 0.25). This
implies that

A. the difference could well have occurred by chance alone
B. the probability the treatments are different in their effectiveness is 0.25
C. the probability the treatments are equally effective is 0.25
D. one of the treatments is 25% more effective than the other
E. the difference in success rates using the two treatments is 25%

15. A patient checks her diastolic blood pressure at home and finds her
average blood pressure for a 2-week period to be 84 mmHg. Assume her blood
pressure to be normally distributed with a standard deviation � = 5 mmHg.
A nurse checks the patient’s diastolic blood pressure in the clinic and finds a
value of 110 mmHg. The clinic reading is apparently

A. not atypical of her distribution of blood pressures
B. consistent with normotensive diastolic blood pressure
C. below the 95th percentile for this patient
D. extremely high for this patient
E. none of the above

16. ‘p-values’ are reported often in the medical literature, yet their meaning is not
always understood. The p-value is
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A. the power of the test
B. the probability of getting a result as extreme or more extreme than the one

observed if the null hypothesis is false
C. the probability the null hypothesis is true
D. the probability of making a type II error
E. the probability of getting a result as extreme or more extreme than the one

observed if the null hypothesis is true

17. An investigator found drug A to be more effective than drug B in reducing
blood pressure (p=0.02). A review of the literature revealed two other stud-
ies reported similar results, one finding p=0.03 and the other p=0.01. The
probability that all three results could have occurred by chance when in fact
there was no difference between the drugs is

A. 0.000006
B. 0.06
C. 0.94
D. 0.000094
E. 0.04

18. A type II error

A. is often made when the p-value is small
B. is always made when the p-value is large
C. can only be made if the null hypothesis is true
D. can only be made if the null hypothesis is false
E. none of the above

19. An investigator wishes to test the hypothesis that the variance of serum
cholesterol levels in a group of school children is 20 (mg/dl)2. Since the
serum cholesterol levels in these children appear to be normally distributed,
the appropriate statistical distribution to use in evaluating the test statistic
is the

A. normal distribution
B. t-distribution
C. F-distribution
D. binomial distribution
E. chi-square distribution

20. Below are five tables giving the frequency of the presence of symptoms among
200 patients with a particular disease and 200 patients without that disease. The
rows and columns are: D=disease present; D =disease absent; S= symptoms
present; and S = symptoms absent. Which table presents results that would be
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expected to yield the smallest chi-square value for testing the hypothesis that
the proportion of patients with symptoms present is the same whether or not
disease is present?

A. D D Total

S 100 100 200
S 100 100 200
Total 200 200 400

B. D D Total

S 100 175 275
S 100 25 125
Total 200 200 400

C. D D Total

S 175 100 275
S 25 100 125
Total 200 200 400

D. D D Total

S 25 100 125
S 175 100 275
Total 200 200 400

E. D D Total

S 100 25 125
S 100 175 275
Total 200 200 400

21. The diastolic blood pressures of a random sample of 25 men are measured.
The sample mean is found to be 85 mmHg, the standard deviation 5 mmHg.
What are the approximate 95% confidence limits for the mean diastolic blood
pressure of the population sampled?

A. 85 ± 1 mmHg
B. 85 ± 2 mmHg
C. 85 ± 5 mmHg
D. 85 ± 10 mmHg
E. 85 ± 15 mmHg

22. Finding a p-value in significance testing begins with the basic assumption that

A. well-trained observers record the data
B. modern computing facilities are available
C. the null hypothesis is true
D. the sample size is at least 30
E. the data are recorded on an interval scale
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23. A researcher wishes to study the mean effects of four treatments, say A, B,
C, and D, on triglyceride levels. He randomly assigns 40 patients to the
four groups – 10 patients to each group. He administers the treatments for
2 months and then measures the triglyceride level of each patient. His statistical
hypothesis is that the mean triglyceride level is the same in each of the four
groups. He knows from a plot of the data that, in these patients, log triglyceride
levels are approximately normally distributed. The investigator should take logs
of his data and use the following to test his hypothesis:

A. F-test
B. �2−test
C. two-sample t-test
D. paired t-test
E. none of the above

24. Which of the following is a statistic?

A. the population standard deviation of height
B. the mean of a binomial distribution
C. the mean of a normal distribution
D. the population variance of height
E. the mean height of a sample of 10 men

25. The power of a test is the probability of

A. accepting a true hypothesis
B. rejecting a true hypothesis
C. accepting a false hypothesis
D. rejecting a false hypothesis

26. On developing a likelihood ratio test of a null hypothesis where we need to
estimate one or more parameters in addition to those explicitly involved in this
null hypothesis, the additional parameters are called

A. Bayes factors
B. Critical values
C. Nuisance parameters
D. Empirical influences
E. Principle components

27. The probability an operation is a success is 3 in 4. The operation is performed
on each of three patients. The probability that at least one of the operations is
a failure is

A. 1/64
B. 63/64
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C. 27/64
D. 37/64
E. 48/64

28. Assume the risk of developing stomach cancer during one’s life is 1 in 50,
whereas that of developing skin cancer is 1 in 25. Further assume that these
events are independent. The risk of developing stomach cancer for a man who
already has skin cancer is

A. 1 in 25
B. 1 in 50
C. 3 in 50
D. 1 in 1250
E. about 1 in 1 .5 million

29. A distribution has a long tail to the right, so that it is not symmetric. We say the
distribution is

A. abnormal
B. positively skewed
C. negatively skewed
D. bell shaped
E. bimodal

30. Sometimes a one-tail test is used to determine significance level, and sometimes
a two-tail test is used. The two-tail test is used for situations in which we know
a priori that

A. two samples are involved
B. both treatments will either increase or decrease the response
C. a paired t-test is appropriate
D. any true difference could be in either direction
E. two proportions are unequal

31. In a study of stomach cancer, patients who had the disease were matched with
patients without cancer (controls) by age, sex, and social class. The frequency
of alcohol consumption was then compared. What type of study was this?

A. clinical trial
B. prospective
C. experimental
D. sample survey
E. retrospective

32. A physician wishes to evaluate the effectiveness of three treatments, A, B,
and C, with regard to time until relief of a headache. He decides to study 60
patients with chronic headache problems by giving 20 patients treatment A, 20
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patients B, and 20 patients C, and observing them until they are relieved of their
headaches. The physician randomly assigns A, B, or C to the 60 patients, using
the restriction that 20 patients receive each treatment, but no other restriction.
The design of this study is

A. double-blind
B. changeover
C. completely randomized
D. Latin square
E. randomized blocks

33. Advantages of using the double-blind procedure in clinical trials include

A. to increase the power of the trial
B. to reduce observer variability in recording data
C. to prevent biased observation of the outcome of a treatment
D. to eliminate chances of a disproportionate number of poor-risk patients in

one of the groups
E. to allow for multiple comparisons

34. For a sample of n observations, we calculate the sample mean and then the
deviation of each observation from the mean. These deviations are summed,
and the result is divided by n–1; the result is

A. zero
B. the sample mean
C. the standard error of the mean
D. the sample standard deviation
E. the sample variance

35. Three new cases of a certain disease occurred during the month of July. If 500
persons were at risk during July, then the

A. prevalence was 3 per 1000 persons
B. incidence was 3 per 1000 persons
C. prevalence was 6 per 1000 persons
D. incidence was 6 per 1000 persons
E. odds ratio was 3:1

36. A group of patients was examined during a routine screening for elevated blood
pressure. Twenty patients were told they had high blood pressure. A drug was
prescribed for these patients, and they were asked to return for re-examination
1 week later. At the second examination it was determined that the mean blood
pressure for these patients was 10 mmHg lower than on the initial screening.
It was claimed that the drug was responsible for the decrease. However, at least
part, if not all, of the decrease would be expected to be due to a phenomenon
known as
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A. observer bias
B. double blinding
C. random allocation
D. false-negative testing
E. regression toward the mean

37. A physician conducted a sample survey of residents who graduated from a
medical school during the last 5 years. The sample design was structured so that
a random 10% of the graduates from each of the five classes were interviewed.
The design can be described as a

A. simple random sample
B. stratified random sample
C. systematic random sample
D. two-stage random sample
E. random cluster sample

38. A control patient of the same age, race, and sex was found for each member
of a group of 25 test patients. The control patients were given a standard drug
and the test patients were given a new drug to determine whether the new
drug increased the number of hours slept during one night of observation.
An appropriate test for the hypothesis of interest is the

A. binomial test
B. paired t-test
C. two-sample t-test
D. F-test
E. chi-square test

39. An investigator studies the effect of a drug for lowering serum cholesterol levels.
Patients are randomly assigned to either an active treatment group or a placebo
group. The patients’ cholesterol levels are then observed for 1 year while they
take one of the treatments daily. This investigation can be described as a

A. historical prospective study
B. case–control study
C. clinical trial
D. retrospective study
E. robust study

40. The incidence of a certain disease among smokers was found to be 20 per
100,000 per year, while among nonsmokers it was found to be 5 per 100,000
per year. This implies that

A. the risk of developing the disease is four times greater among smokers than
among nonsmokers
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B. smokers require four times as many hospital beds as nonsmokers with the
disease

C. the prevalence of smoking was four times as great among diseased persons
as compared to nondiseased persons

D. the risk of developing the disease appears to be unrelated to smoking
E. a clinical trial is needed to estimate the risk of developing the disease

41. In experimental studies, known sources of extraneous variability in the outcome
variable are best controlled by using

A. randomization
B. completely randomized designs
C. randomized block designs
D. sample surveys
E. double-blind procedures

42. Investigator A claims his results are statistically significant at the 5% level.
Investigator B argues that significance should be announced only if the results
are statistically significant at the 1% level. From this we can conclude

A. it will be more difficult for investigator A to reject statistical null hypotheses
if he always works at the 5% level (compared with investigator B)

B. it will be less difficult for investigator A to reject statistical null hypotheses
if he always works at the 5% level (compared with investigator B)

C. if investigator A has significant results at the 5% level, they will also be
significant at the 1 % level

D. if investigator A has significant results at the 5% level, they will never be
significant at the 1 % level

E. none of the above

43. The duration of disease A is longer than that of disease B. They both have the
same incidence. The prevalence of disease A would then be expected to be

A. the same as that of disease B
B. less than that of disease B
C. greater than that of disease B
D. less than the incidence of the disease
E. greater than the incidence of the disease

44. Two laboratory methods for determining triglyceride levels are being com-
pared. Method A has a coefficient of variation of 8%, while method B has a
coefficient of variation of 3%. This implies that

A. method B is less precise than method A
B. the distribution of method B is less skewed than that of method A
C. method B is less apt to produce false positives
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D. method B is easier to carry out than method A
E. there is less bias in method A than in method B

45. Suppose the regression equation for predicting y from x is given by y= 10+3x.
Then all the following are true except

A. the intercept is 10
B. the correlation between x and y is negative
C. the slope of the regression line is positive
D. the predicted value of y for x=4 is 22
E. y increases as x increases

46. An estimator that has optimal properties when certain assumptions are true
but also performs well when the assumptions are false is said to be

A. efficient
B. unbiased
C. unique
D. maximum likelihood
E. robust

47. A researcher carries out an analysis of variance on a set of data and finds a
statistically significant interaction between two factors of interest. A similar
analysis, performed after taking logarithms of the observed data and carried out
on these transformed data, did not result in a statistically significant interaction.
The analysis of the transformed data is the preferred analysis because, on the
transformed scale,

A. the effects of the two factors are additive
B. the residual errors are uniformly distributed
C. the residual errors are not independent
D. the residual errors have variances proportional to the magnitude of the

difference between the means for the individual factors
E. none of the above

48. An analysis of variance was carried out to compare the mean diastolic blood
pressure in four groups of patients. This resulted in the finding that the variabil-
ity among groups was not significantly greater than that within groups. A closer
study of the data revealed, however, that the age distribution was not the same
in the four groups. An analysis of covariance was therefore performed, with
age as the covariate, and then statistically significant differences were found
among the groups. The most likely explanation for this disparity in the results
of the two analyses is

A. the residual errors are not independent
B. nonparametric tests are more powerful than their parametric counterparts
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C. more precise comparisons among the groups are possible when the
obscuring effect of age is accounted for

D. p-values are easier to obtain using the analysis of covariance procedure
E. none of the above

49. The main purpose of discriminant analysis is

A. to adjust for concomitant variables
B. to remove the obscuring effects of interaction terms
C. to explain linear relationships with covariates
D. to compare categorical data
E. to classify individuals into categories

50. The estimated probabilities of survival for the first, second, and third years
after surgery in a group of experimental patients were found to be 0.80, 0.67,
and 0.52, respectively, while those for a control group were found to be 0.76,
0.59, and 0.37. The difference between the two survival profiles was found to
be statistically significant. Based on these data, the most appropriate conclusion
is that

A. the experimental group appears to have a better survival profile
B. the control group appears to have a better survival profile
C. the survival profiles are about the same
D. a regression analysis is needed to compare the two groups
E. incidence rates are required to compare the two groups

51. All of the following are based on statistical data except

A. smoking increases the risk of lung cancer
B. wearing seat belts increases the chance of survival in automobile accidents
C. the chance a newborn baby is female is slightly less than 50%
D. the sun will rise tomorrow
E. � is the ratio of the circumference of a circle to its diameter

52. In determining the difference in genetic expression between tumor and non
tumor cells at a large number of loci, one might expect no difference in expres-
sion for about half the loci and a flat uniform distribution of differences for the
other half. This spike and slab model for expression data is an example of

A. a prior distribution
B. a uniform prior Bayesian model
C. a binomial model
D. a discriminant model
E. a logistic regression model
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(The numbers in parentheses indicate the pages where the subject is discussed)
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8. (31)
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6. (61–62)
7. E (61–62)
8. (62–63)
9. B (62, 64)

10. (62, 64, 66)
11. C (64–66)
12. (65–66)
13. B (65–66) Note that the range for set 1 is 30, while for set 2 it is 70.
14. (62–63)
15. B (62–64) The cumulative plot corresponds to the data shown in the histogram

in Problem 14.

CHAPTER 4

1. D (79–63) 0.007 + 0.020 − 0.0008
2. (83–88)
3. E (83–88) 0.0008 ÷ 0.007
4. (84)
5. D (84) 0.3 × 0.3 × 0.3
6. (84)
7. E (84) 1 − 0.2 × 0.1 × 0.3
8. (54, 83–84)
9. C (54, 83–84) 0.7 × 0.8 or 1 − (0.3 + 0.7 × 0.2)

10. (89–92)
11. B (97) Child receives O from father; the likelihood ratio is thus 1 ÷ 0.67.
12. (89–92)
13. C (89–92)
14. (97)
15. A (97)

CHAPTER 5

1. C (107–108)
2. (107–108)
3. B (111)
4. (111)
5. C (111) 1 − (1 − 0.25)3

6. (114–116) The number of possible mutant colonies on a plate is indefinitely
large.
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7. B (113–114)
8. B (116–118)
9. D (116–118)

10. (118)
11. B (118) 150 ± 10
12. (118)
13. D (118) Note the probability must be larger than 0.68 and less than 0.95.
14. (120–121)
15. D (119–120)

CHAPTER 6

1. D (134–135) Note that the word ‘estimate’ is commonly used in place of
the more appropriate word ‘estimator’.

2. (137–138)
3. D (135)
4. (136)
5. D (135–136)
6. (140–141)
7. A (140–141)
8. (137–138, 140–141)
9. B (140–141)

10. (142–143)
11. A (140–141)
12. (140–141)
13. D (145)
14. (144–145)
15. B (142–143)

CHAPTER 7

1. E (155–159)
2. (160–161)
3. D (160–161)
4. (158–159)
5. A (161–163)
6. (159)
7. C (156, 159)
8. (176)
9. C (167–168)
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10. (169–171)
11. A (165–166)
12. (173)
13. C (174) A robust test is analogous to a robust estimator.
14. (174–175)
15. A (173–175)

CHAPTER 8

1. B (190–191)
2. (192)
3. A (194–195)
4. (197–198)
5. E (195–196)
6. (195–196)
7. E (197)
8. (191–192)

CHAPTER 9

1. E (165–166)
2. (209–210)
3. A (206–209)
4. (209–212)
5. D (209–212, 217)
6. (217)
7. D (209–212, 217)
8. (217)
9. D (215–216)

10. (215–216)
11. B (219–220)
12. (165–166)
13. B (161) If the proportions of exposed cases and controls are the same, the odds

ratio is 1. The 95% confidence interval for the odds ratio does not include 1;
this indicates that the proportions are significantly different at the 5% level
(p < 0.05).

14. (220–221)
15. E (221–222)
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CHAPTER 10

1. D (244–246)
2. (234–235)
3. D (250)
4. (244–246)
5. B (244–246)
6. (244–246, 250–251)
7. C (244–246)
8. (246–248)
9. C (244)

10. (247–248)
11. A (248–251)
12. (247–249)
13. D (247–251)
14. (250)
15. E (251–251)

CHAPTER 11

1. C (282)
2. (282)
3. C (267–268)
4. (275)
5. B (275)
6. (270–273)
7. A (270)
8. (271–272)
9. D (271–272, 278)

10. (277)
11. E (276–277)
12. (277–279)
13. D (281–282)
14. (281–282)
15. A (282)

CHAPTER 12

1. A (281–282)
2. (293–294)
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3. B (295–296)
4. (294)
5. D (296–297)
6. (299–301)
7. C (299–300)
8. (299–301)
9. A (246–248)

10. (296–298)
11. C (293–294)
12. (300–301)
13. D (293–294)
14. (299–300)
15. C (293–294)

REVIEW PROBLEMS

1. D (3–4)
2. (4)
3. B (6–7) Contact with a statistician should be initiated as early as possible, but

it is not a statistician’s role to help decide what is medically appropriate.
4. (4–5)
5. D (89–92) Use Bayes’ theorem: (0.2 × 0.95) ÷ [(0.2 × 0.95) + (0.8 × 0.1)].
6. (140–141)
7. A (49–50)
8. (67–68)
9. E (244–245)

10. (118, 137)
11. B (132–133)
12. (159)
13. D (134–135)
14. (156–160)
15. D (108, 120–121)
16. (156–159)
17. A (85) This is the correct answer to the question as worded, but it is not the

combined p-value. The combined p-value would be the probability that all
three results or anything more extreme could have occurred by chance and is
obtained as indicated on pages (220–221).

18. (173–174)
19. E (219–220)
20. (210–212)
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21. B (142–144)
22. (155–156)
23. A (266–268)
24. (5, 45)
25. D (172–174)
26. (189)
27. D (112) The probability that all three operations are successes is

(
3
4

)3 = 27
64 .

Therefore, the probability of at least one failure is 1 − 27
64 = 37

64 .
28. (83–85)
29. B (66)
30. (160–161)
31. E (25)
32. (30–31)
33. C (35)
34. (66)
35. D (55–58)
36. (251–252)
37. B (23)
38. (168–169)
39. C (34)
40. (58–59)
41. C (31)
42. (143, 176)
43. C (58)
44. (66–67)
45. B (234–235, 244–246)
46. (135)
47. A (277–279)
48. (281–282)
49. E (295–296)
50. (299–303)
51. E (3–6)
52. (197)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX

Additional Notes and
Computational Formulas

CHAPTER 3

1. The Greek capital sigma, �, is the mathematical sign for summation. If we have a
sample of n observations, say y1, y2, y3, . . . , yn, their sum is y1 +y2 +y3 + . . .+yn.

This can also be written
n∑

i=1
yi or

∑n
i=1 yi, which is read as ‘the sum of the yi, for

i running from 1 to n.’ The computational formula for the sample mean, which
we shall denote y, is

y = 1
n

n∑
i=1

yi.

2. Using the same notation, the variance is

s2 = 1
n − 1

n∑
i=1

(yi − y)2 = 1
n − 1

n∑
i=1

d2
i

where di = yi − y. This is the best formula to use on a computer that can store
all the yi in memory. If a calculator is being used, it is usually more convenient
to use the mathematically equivalent formula

s2 = 1
n − 1

⎡
⎣

n∑
i=1

y2
i − 1

n

(
n∑

i=1

yi

)2
⎤
⎦ .
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First
∑n

i=1 yi is calculated, squared, and divided by n; this gives the ‘correc-
tion factor’ 1

n

(∑n
i=1 yi

)2
. Then

∑n
i=1 y2

i is calculated and the ‘correction factor’
subtracted from it. The result is divided by n − 1.

3. The coefficients of skewness and kurtosis are, respectively,

n1/2
∑n

i=1(yi − y)3

[∑n
i=1(yi − y)2

]3/2 and
n

∑n
i=1(yi − y)4

[∑n
i=1(yi − y)2

]2 .

CHAPTER 4

1. Bayes’ theorem can be derived quite simply from the basic laws of probability.
We have

P(Dj|S) = P(Dj and S)

P(S)

and

P(S) = P(D1 and S, or D2 and S, . . . . , or Dk and S)

= P(D1 and S) + P(D2 and S) + . . .+ P(Dk and S)

because D1, D2, . . . . , Dk are mutually exclusive. It follows immediately that

P(Dj|S) = P(Dj and S)

P(D1 and S) + P(D2 and S) + · · · + P(Dk and S)
.

2. Data collected by a paternity testing laboratory can be used to estimate the
proportion of past cases in which the alleged father was the true father, without
any knowledge of whether in each case the alleged father was or was not the true
father. Briefly, one method of doing this is as follows. From a large series of cases
that have come to the laboratory we can calculate the proportion of cases that
resulted in an exclusion, which we shall call P(E). Using genetic theory and a
knowledge of the gene frequencies in the population, we can calculate P(E|D2),
the probability of exclusion given that a random man is the true father (see, for
example, MacCluer and Schull, 1963). If we assume only two mutually exclusive
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possibilities exist – D1, the alleged father is the true father, or D2, a random man
is the true father – we must have

P(E) = P(D1 and E) + P(D2 and E)

= P(D1)P(E|D1) + P(D2)P(E|D2)

But P(E|D1) – the probability of exclusion given that the alleged father is the
true father – is zero (whenever the alleged father is the true father, he will not
be excluded by the blood testing). Therefore,

P(E) = P(D2)P(E|D2)

and so we can calculate P(D2) = P(E)/P(E|D2), and hence P(D1) = 1 − P(D2).
In situations in which this ‘prior probability of paternity’ has been estimated, it
has been found to be typically between 0.65 and 0.9.

CHAPTER 6

1. The asymptotic properties of unbiasedness, efficiency, and normality hold in gen-
eral only for maximum likelihood estimators if the likelihood is made a maximum
in the mathematical sense (i.e., when the estimates are substituted for the para-
meters, the likelihood has to be larger than when any other neighboring values
are substituted). A likelihood, just like a probability density function, can have
one mode, several modes, or no modes; each modal value is a particular maximum
likelihood estimate of the parameter. Thus, maximum likelihood estimates may
not be unique, nor need they even exist for permissible values of the paramet-
ers. A variance, for example, must be positive, and yet its maximum likelihood
estimate may sometimes be negative. In a situation such as this the maximum
likelihood estimate is sometimes said to be zero, if at zero the likelihood is largest
for all permissible values of the parameter. In genetics, the recombination frac-
tion cannot be greater than 0.5. For this reason the maximum likelihood estimate
is often said to be 0.5 if the true maximum occurs at some value greater than
0.5. Since in these cases the likelihood is not, however, at a mathematical max-
imum (i.e., it is not at a mode), such estimators do not possess the same good
properties, asymptotically, that true maximum likelihood estimators possess.

2. Even if a maximum likelihood estimate is obtained as a mathematical maximum
of the likelihood, there are still certain cases in which, however large the sample,
it is still not unbiased. This occurs if, as the sample becomes larger and larger,
so does the number of unknown parameters. In such situations the problem is
often overcome by maximizing a so-called conditional likelihood. You are most
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likely to see this term in connection with matched-pair designs. You may also
encounter the term ‘partial likelihood’; estimators that maximize this have the
same usual asymptotic properties of maximum likelihood estimators.

3. To show the equivalence between

P

(
−2 ≤ Y − μ

σY ≤ 2
≤ 2

)
= 0.95

and

P
(
Y − 2σY ≤ μ ≤ Y + 2σY

) = 0.95,

first note that within each probability statement there are two inequalities.
We can manipulate these inequalities by the ordinary rules of algebra, without
changing the probabilities, as follows (read the sign <=> as ‘is equilvalent to’):

−2 ≤ Y − μ

σY
≤ 2

<=> −2 ≤ Y − μ

σY
and

Y − μ

σY
≤ 2

<=> −2σY ≤ Y − μ and Y − μ ≤ 2σY

<=> μ − 2σY ≤ Y and Y ≤ μ + 2σY

<=> μ ≤ Y + 2σY and Y − 2σY ≤ μ

<=> Y − 2σY ≤ μ ≤ Y + 2σY.

CHAPTER 7

1. The null hypothesis must be very specific, since we need to know the distribution
of the test criterion under it. If our research hypothesis is, for example, � < 0.6,
we want to disprove the alternative � ≥ 0.6. But, to be specific, we take as our
null hypothesis the specific value of π that is least favorable to our research
hypothesis; namely, � = 0.6. Clearly, if we reject the hypothesis � = 0.6 in favor
of �<0.6, we must reject with even greater conviction the possibility that �>0.6.
In other words, whenever an inequality is involved in what we try to disprove,
we take as our specific null hypothesis the equality that is closest to the research
hypothesis; for if we disprove that particular equality (e.g., � = 0.6), we shall
have automatically disproved the whole inequality (e.g., � ≥ 0.6).



APPENDIX 357

2. The mean of the statistic T for the rank sum test can be derived as follows.
First, note that the average of N numbers 1, 2, . . . , N is (N + 1)/2. Under
the null hypothesis, T is the sum of n1 randomly picked numbers from the
set of numbers 1, 2, . . . , n1 + n2. So, putting N = n1 + n2, their average is
(n1 +n2 +1)/2; therefore, the sum of n1 random numbers from the set would be
expected, on an average, to be n1(n1 + n2 + 1)/2. If T is less than this we would
suspect that the median of the first population is less than that of the second,
and conversely if T is greater than this. It is not so simple to derive the standard
deviation of T.

3. Notice that throughout this chapter we talk about testing the null hypothesis,
hoping to ‘disprove’ it in favor of the alternative hypothesis. Sometimes we want
to show that two treatments are equivalent, hoping to disprove the hypothesis
that they are different. We might wish to show, for example, that two different
drugs lead to the same changes in blood pressure, �1 and �2. However, it is
doubtful whether we would ever be in a situation where the equality �1 = �2

holds exactly, and we would probably be more interested in knowing whether
|�1 − �2| > �, where � is the largest value of the mean difference that is not
clinically significant. In this case we let the null hypothesis be �1 −�2 = �, that is,
�1 − �2 − � = 0, and the alternative is two-sided: �1 − �2 − � < 0 or
�1 − �2 − � > 0, which is the same as |�1 − �2| > �.

CHAPTER 8

Let the two hypotheses be H0 and H1, with prior probabilities P(H0)=P(H0 is true)
and P(H1) = P(H0 is false), respectively, and denote the data D. Thus we write:

P(H1|D) = P(H1)P(D|H1)

P(H1)P(D|H1) + P(H0)P(D|H0)
.

First note that because we assume P(H0) + P(H1) = 1, the denominator of the
fraction on the right is equal to P(D), that is, we have

P(H1|D) = P(H1)P(D|H1)

P(D)
.

Now divide both sides by P(H0|D) and we obtain:

P(H1|D)

P(H0|D)
= P(H1)P(D|H1)

P(D)P(H0|D)
.
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But the denominator on the right is P(D)P(H0|D) = P(D, H0) = P(H0)P(D|H0) so
that we have

P(H1|D)

P(H0|D)
= P(H1)P(D|H1)

P(H0)P(D|H0)
,

that is, the posterior odds = the prior odds × the likelihood ratio.

CHAPTER 9

1. For any quantity x2, we have

x2 = (1 − �1)x2 + �1x2.

Thus,

(
y1 − nπ1

)2

nπ1 (1 − π1)
= (1 − π1)

(
y1 − nπ1

)2

nπ1 (1 − π1)
+ π1

(
y1 − nπ1

)2

nπ1 (1 − π1)

=
(
y1 − nπ1

)2

nπ1
+

(
y1 − nπ1

)2

n (1 − π1)
.

Now substitute y1 =n−y2 and �1 =1−�2 in the numerator of the second term;
we obtain

(
y1 − nπ1

)2

nπ1
+

[(
n − y2

) − n (1 − π2)
]2

n (1 − π1)
=

(
y1 − nπ1

)2

nπ1
+

(−y2 + nπ2
)2

nπ2

=
(
y1 − nπ1

)2

nπ1
+

(
y2 − nπ2

)2

nπ2
.

2. There is another (mathematically identical) formula for calculating the Pearson
chi-square statistic from a 2 × 2 contingency table. Suppose we write the table
as follows:

a b a + b
c d c + d

a + c b + d N = a + b + c + d

The formula is then

(ad − bc)2N
(a + b)(c + d)(a + c)(b + d)

.
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Sometimes this formula is modified to include a so-called correction for continu-
ity that makes the resulting chi-square smaller. Provided each expected value is
at least 5, however, there is no need for this modification.

3. Suppose we calculate the usual contingency table chi-square to test for inde-
pendence between two response traits when we have matched pairs. As in
Chapter 9, suppose each pair consists of a man and a woman matched for
age, and the response variables are the cholesterol level of the man and the
cholesterol level of the woman in each pair. Then the usual contingency table
chi-square would be relevant for answering the question: is the cholesterol level
of the woman in the pair independent of the cholesterol level of the man in the
pair? (That is, does age, the matching variable, have a common effect on the
cholesterol level of both men and women?) In other words, in this type of study
the usual contingency table chi-square tests whether the matching was neces-
sary – a significant result indicating that it was, a nonsignificant result indicating it
was not.

CHAPTER 10

1. For a sample of n pairs, let x and y be the sample means. Define the quantities:

SSx =
n∑

i=1

(xi − x)2 =
n∑

i=1

x2
i − 1

n

(
n∑

i=1

xi

)2

,

SSy =
n∑

i=1

(
yi − y

)2 =
n∑

i=1

y2
i − 1

n

(
n∑

i=1

yi

)2

,

SSxy =
n∑

i=1

(xi − x)
(
yi − y

) =
n∑

i=1

xiyi − 1
n

(
n∑

i=1

xi

)(
n∑

i=1

yi

)
.

Thus SSx is the total sum of the squared deviations of the xi from the mean x,
and SSy is the total sum of the squared deviations of the yi from the mean y. SSxy

is the analogous total sum of the cross-products; and the same considerations
govern which formula to use for calculating this as govern the calculation of SSx

and SSy. (See note 2 for Chapter 3 in this Appendix.) Using these quantities, we
successively calculate the estimated regression coefficient b1 and intercept b0,
for the regression line ŷi = b0 + b1xi, as follows:

b1 = SSxy

SSx
,
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b0 = y − SSxy

SSx
x = y − b1x.

The sum of squares in Table 10.1 can then be calculated as

SSR = SS2
xy

SSx
= b1SSxy,

SSE = SSy − SS2
xy

SSx
= SSy − b1SSxy,

and, as explained, the mean squares are obtained by dividing the sums of the
squares by their respective degrees of freedom, that is,

MSR = SSR

1
= SSR,

MSE = SSE

n − 2
.

Note that the total sum of squares is

SST = SSR + SSE = SSy

(i.e., the total sum of squares of the response variable Y about its mean). The
standard error of b1 is

√
MSE/SSx.

2. The estimated regression line of X on y is given by

b1 = SSxy

SSy
,

b0 = x − SSxy

SSy
y = x − b1y.

The covariance between X and Y is estimated by

SSxy

n − 1
,

and the correlation by

SSxy√
SSxSSy

.
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3. It is instructive to check, in the tables of the t-distribution and F-distribution,
that the square of the 97.5th percentile of Student’s t with k d.f. is equal to the
95th percentile of F with 1 and k d.f. Similarly, the square of the 95th percentile
of t with k d.f. is equal to the 90th percentile of F with 1 and k d.f. Just as χ 2

with 1 d.f. is the square of a normal random variable, so F with 1 and k d.f. is the
square of a random variable distributed as t with k d.f. Thus, articles you read in
the literature may use either of these equivalent test statistics.

CHAPTER 11

1. It is possible to calculate the mean squares in Table 11.3 from the data presented
in Table 11.2. The mean square among drug groups is 10 (the number of patients
in each group) times the variance of the four group means (i.e., 10 times the
variance of the set of four numbers 80, 94, 92, and 90). The mean square within
drug groups is the pooled within-group variance. Since each group contains the
same number of patients, this is the simple average of the four variances,

10.52 + 9.52 + 9.72 + 10.22

4
.

2. There are several multiple comparison procedures that can be used to test which
pairs of a set of means are significantly different. The simplest (Fisher’s least
significant difference method) is to perform Student’s t-test on all the pairwise
comparisons, but to require in addition, before making the pairwise comparisons,
a significant overall F-test for the equality of the means being considered. The
t-tests are performed using the pooled estimate of �2 given by the error mean
square of the analysis of variance. Another procedure (the Fisher–Bonferroni
method) similarly uses multiple t-tests, but each test must reach significance at
the �/c level, where c is the total number of comparisons made, to ensure an
overall significance level of �.

Several procedures (due to Tukey, Newman and Keuls, and Duncan) begin
by comparing the largest mean with the smallest, and continue with the next
largest difference, and so on, until either a nonsignificant result is encountered
or until all pairwise comparisons have been made. At each step the difference is
compared to an appropriate null distribution.

A further method (Scheffé’s) allows for testing more complex contrasts (such
as H0: �1 − �2 + �3 − �4 = 0), as well as all pairwise comparisons of means.
Finally, there is a procedure (Dunnett’s) aimed specifically at identifying group
means that are significantly different from the mean of a control group.
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All these tests are aimed at maintaining the overall significance level at some
fixed value, � (i.e., ensuring that, if the null hypothesis is true, the probability of
one or more significant differences being found is �).

3. We now give simple rules for writing down formulas for sums of squares that
apply in the case of any balanced design (i.e., any design in which all groups of
a particular type are the same size). The rules are easy to apply if the degrees
of freedom are known for each source of variation. Consider first the ‘among
groups’ sums of squares in Table 11.1.

1. The degrees of freedom are a − 1.
2. Write down a pair of parentheses and a square (superscript 2) for each term

in the degrees of freedom: ( )2 ( )2.
3. In front of each pair of parentheses write the appropriate sign corresponding

to the term in the degrees of freedom, and a summation sign for each letter
in the degrees of freedom:

a∑
i=1

( )2 − ( )2 .

4. Put summation signs inside the parentheses for all factors and replicates that
are not summed over outside the parentheses, followed by the symbol for a
typical observation:

a∑
i=1

(
n∑

k=1

yik

)2

−
(

a∑
i=1

n∑
k=1

yik

)2

.

5. Finally, divide each term by the number of observations summed within the
parentheses:

SSA =
∑a

i=1

(∑n
k=1 yik

)2

n
−

(∑a
i=1

∑n
k=1 yik

)2

an

Applying this same sequence of rules, we obtain the sum of squares within
groups for Table 11.1, noting that we multiply out the expression for the degrees
of freedom.

1. an – a
2. ( )2 ( )2

3.
a∑

i=1

n∑
k=1

( )2 −
a∑

i=1
( )2
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4.
a∑

i=1

n∑
k=1

(yik)
2 −

a∑
i=1

(
n∑

k=1
yik

)2

5. SSR =
∑a

i=1

∑n
k=1

(
yik

)2

1
−

∑a
i=1

(∑n
k=1 yik

)2

n
.

Similarly, for the nested factor analysis of variance in Table 11.4 we obtain

SSA =
∑a

i=1

(∑b
j=1

∑n
k=1 yijk

)2

bn
−

(∑a
i=1

∑b
j=1

∑n
k=1 yijk

)2

abn
,

SSB =
∑a

i=1

∑b
j=1

(∑n
k=1 yijk

)2

n
−

∑a
i=1

(∑b
j=1

∑n
k=1 yijk

)2

bn
,

SSR =
a∑

i=1

b∑
j=1

n∑
k=1

y2
ijk −

∑a
i=1

∑b
j=1

(∑n
k=1 yijk

)2

n
.

For the two-way analysis in Table 11.6 we obtain

SSA =
∑a

i=1

(∑b
j=1

∑n
k=1 yijk

)2

bn
−

(∑a
i=1

∑b
j=1

∑n
k=1 yijk

)2

abn
,

∑a
i=1

∑b
j=1

(∑n
k=1 yijk

)2

SSB =
∑b

j=1

(∑a
i=1

∑n
k=1 yijk

)2

an
−

(∑a
i=1

∑b
j=1

∑n
k=1 yijk

)2

abn
,

SSAB =
∑a

i=1

∑b
j=1

(∑n
k=1 yijk

)2

n
−

∑a
i=1

(∑b
j=1

∑n
k=1 yijk

)2

bn

−
∑b

j=1

(∑a
i=1

∑n
k=1 yijk

)2

an
+

(∑a
i=1

∑b
j=1

∑n
k=1 yijk

)2

abn
,

SSR =
a∑

i=1

b∑
j=1

n∑
k=1

y2
ijk −

∑a
i=1

∑b
j=1

(∑n
k=1 yijk

)2

n
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354–5

Distribution 24–5, 28, 48–9, 108–20
asymmetric 68
binomial 109–12, 165
chi-square 203–6, 220, 222–4
estimators 309–10
F 165–7, 266, 282–3
frequency 48t, 48, 63, 108
normal 68, 68f, 116–18, 117f, 120f, 121

Poisson 113–14, 114f, 135
sample mean 138–40
Student’s t 142–4, 143f, 157–9, 158f,

169, 174, 189
uniform 114–16, 115f, 120f

Distribution-free methods 169, 309
Fisher’s exact test 217, 306–9, 308t
Kruskal-Wallis test 283
permutation test 304–9
randomization test 304
rank sum test 169, 357
signed rank test 173–4
sign test 172–4

DNA 8–9
Dominant allele 9, 190, 193
Dominant inheritance 193
Double blinding, masking 35
Down syndrome (trisomy 21) 81
Duncan’s procedure 361
Dunnett’s procedure 361
Duration, incidence and prevalence of

disease 58, 60

Effect size 326
Efficient estimator 134–5
Empirical Bayes analysis 197–8
Epidemic 10
Epidemiology 4, 10–13
Error 173–4

type I 173
type II 173–4

Error mean square 238–9, 360
Error sum of squares 237–8, 247, 360
Estimate 131–4, 146
Estimating intervals 137–8
Estimating sample size 11
Estimator 131–3, 146, 309–10

biased 134, 310
efficient 134–5
maximum likelihood 136, 355–6
notation 133
properties 134–5, 355–6
robust 135, 310
unbiased 134, 146, 310
see also Minimum variance unbiased

estimator
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Ethics in clinical trials 36
Exclusion 94, 96, 354–5
Expected mean square 271, 271t,

273–4, 278t
Expected value 206–9, 208t, 269, 271–2,

271t, 278t, 279
Experimental design 29–34
Experimental study 30
Experiment-wise Type I error 196
Extraneous variability 33

Factor 8, 10
demographic 10
economic 10
environmental 10
genetic 10, 12
social 10
temporal 10

Factorial arrangement of treatments
32–3, 274–5, 278t

Failure rate 296, 300
False discovery rate 190–1, 197
False research hypothesis 190–1
Family-matched case-control study 28
Family study 28
Familywise Type I error 196
Fisher’s exact test 217, 306–9, 308t
Fisher, Sir Ronald 158, 165, 266
Fixed effect 270, 273, 278
Fixed model 270
Follow-up study 34
Force of mortality 300
Forward stepwise regression 249
Fractional factorial arrangement 33
Frequency distribution 48, 48t, 63
Frequency polygon 51, 51f, 52f, 68
Frequentist 190–2
Frequentist probability 193
F-test 167, 240, 247, 247t, 248t, 266–7,

272, 278t, 279, 282–3, 361

Galton, Sir Francis 233–4
Gaussian distribution, see Normal

distribution, Standard normal
distribution

Gauss, K.F. 116

Gene 8–9
Gene-locus 9, 27
Genetic component 27
Genetic counseling 81, 86

conditional probability in 87–9
Genetics 4, 6, 8, 12–13, 20, 112
Genotype 9, 12, 33, 298
Geometric mean 63
Glycemic index 279
Goodness-of-fit test 206–9
Graph 46, 49–55, 68, 323
Growth curve 34

Haplotype 9
Hardy-Weinberg 208
Hazard function 299–301
HbA1C 272, 273t, 274
Hemophilia 88, 92–4, 93f, 295
Heterogeneity 31, 216, 224, 267, 326
Heterogeneous population 218–19
Heteroscedasticity 239, 283
Heterozygote, heterozygous 9
Hierarchical analysis of variance 270,

271t
Histogram 49–52, 50f, 68, 119, 311
Historical cohort study 26, 28, 37
Historical prospective study 26, 28, 37
HLA 59, 87, 195–6
Homoscedasticity 239, 283
Homozygote, homozygous 9
Horizontal scale 49–51
Hotelling, Harold 294
Hotelling’s T2 294
Human leukocyte antigen 59
Human study 31, 34, 36, 321–2
Hypercholesterolemia 206–7, 215
Hypergeometric probability

distribution 307–8
Hyperparameter 197
Hypothesis testing 156–7, 172, 190,

193, 282

Inbreeding 219
Incidence 56–61
Independent events 86, 113, 217, 224
Independent variable 209
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Individually randomized plan 34
Inductive reasoning 3–4
Inference 3–6, 12, 19, 21–3, 32, 188–9,

219–20, 309–10, 323–4
Informed consent 36
Instantaneous failure rate 300
Interaction effect 277
Intercept 235, 359–60
Internal review board 36
Interquartile range 64
Interval scale 46, 49, 68
Intervene, intervention 6, 12, 19, 28–9, 34

Jackknife 311
Joint probability 83–7, 90f, 91, 92f

Kaplan-Meier method 301–2, 303f
King Tut 13
Kruskal-Wallis test 283
Kurtosis 68

Least-squares estimate 135, 236–7, 239
Leptokurtic 68
Life table method 301
Likelihood 97, 135–6, 187–90

see also Maximum likelihood estimates
Likelihood ratio 97, 188–90, 193–4, 198

criterion 188–9, 221–4, 297
Linear model 268–9, 275, 281

fixed effects 270, 273
mixed effects 270, 273
multivariate general 294
random effects 270

Linear regression
coefficient 237, 247–8, 252, 301, 359
diagnostics 250
error mean square 238–9, 361
error sum of squares 237
graph of equation 234f, 235f, 236f,

237f, 238f
intercept 235, 359–60
least squares 236–7, 239
model 234, 238, 246–7, 248t, 250–1
multiple 246–50, 247t, 252, 293
predicted value 250
proportion of variability explained 251

regression sum of squares 238,
247, 360

residual 237–8, 237f, 249–50
residual sum of squares 237–8
simple 233–40, 239t
slope 235, 237–8, 239t, 240, 246
stepwise, backward, forward 248–9

Linear relationship 239, 242
Linkage disequilibrium 87
Lipoprotein 13
Locus, loci 8–9, 32–3, 197
Logic 5, 324
Logistic regression 296–8, 298t, 301
Logistic transformation 297
Logit transformation 297
Longitudinal study 34

McNemar’s test 215–16, 219, 224
Main effect, of factor 275–9, 278t
Mann-Whitney test 170
MANOVA, see Multivariate analysis

of variance
Masking 35
Matched pairs 26, 216, 355–6

t-test 168
Maximum likelihood estimate 135–6,

142, 189, 193, 239, 297, 301, 355–6
Mean 62–3
Mean square 238–9, 239t

due to regression 238, 239t
Mean squared error 238–9, 361
Measurement of

association 10
central tendency 62–4
error 33, 107, 235–6, 240, 246, 252
shape 67–8
spread or variability 64–7

Median 62–3, 67f
Medical significance 176
Medicine, role of biostatistics in 3, 5, 8
Mendel 8
Mendellian segregation 9
Meta-analysis 324–6
MGLM, see Multivariate generalized

linear model
Micro-array 195
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Micro-array SNP-chip data 195
Minimum variance unbiased estimator

134–5
Minor allele 197
Mixed model 270
Mode 62–4, 67–8, 116, 118, 355
Molecular genetics 8
Monogenic disease 12, 27
Multiple allelism 86
Multiple classification 269
Multiple comparison procedure 195–6,

361
Multiple correlation 250–1

coefficient 250–1
Multiple regression 246–50, 247t,

252, 294
Multiple testing 195–6

Bonferroni method 196, 361
Multivariate method 196
Sidák’s method 196

Multivariate analysis of variance
(MANOVA) 293–5

Multivariate generalized linear model
(MGLM) 294

Mutation 9
Mutually exclusive events 82–3
Myotonic dystrophy 22

Nested analysis of variance 270, 271t, 363
Nested family design 28
Nested predictor variable 270–4, 270f
Newman-Keuls’ procedure 361
Nominal scale 46–7
Nonindependent events 86–7
Noninformative 192
Non-informative prior probability 192–3
Normal distribution 116
Normal range 137
Nuclear families 27
Nuisance parameter 189, 192–3, 197
Null hypothesis 155–6

Observational study 25–7, 30
Observed value 207, 239
Odds 59
Odds ratio 59–60, 298

One-sided test 161, 165, 174, 176–7
Opinion polls 12
Ordinal scale 46
Ordinate 52
Osteoporosis 13

Paired observations 170
Paired t-test 168, 173
Parameter 5, 23
Parameter domain restricted 188
Partial correlation 250–1

coefficient 251
Paternity testing 96–7, 354
Peakedness 68
Pearson’s product-moment correlation

coefficient 244
Percentage 51, 55
Percentile 63
Permutation test 304–9
Person-years at risk 57
Phase I, II, III, IV studies 34–5
Phenotype 9, 190
Phenylalanine 12
Phenylketonuria 12
Placebo 35

effect 35
Platykurtic 68
Poisson distribution 113–14, 114f, 135
Polymorphism 9, 195
Pooled estimate 145, 266–7, 361
Pooled variance 145, 166
Population 5–6, 10, 12, 21–5

parameters 5, 112, 133, 155
study 22–3, 27, 322
target 22–3, 27, 29–30, 322

Posterior 191
distribution 192, 194–5, 194f
odds 191–2, 194, 358
probability 91, 97, 190–1, 197

Posterior odds of the research hypothesis
191–2, 194, 358

Power 174–6, 175f, 193, 196, 322–3, 325
Precision of measurement 33, 176, 322
Prediction model 249
Predictive value 61–2, 250
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Predictor variable 209–10, 233, 235–6,
248–51, 266, 281, 293

Prevalence 25, 56, 57f, 58, 60
Prevalence ratio 60
Prior distribution 195, 197, 304
Prior odds 191–4, 358
Prior probability 91, 192–3, 355, 357
Probability 79–85

conditional 83–4, 90f, 92f, 97
conditional, genetic counseling 87–9
definition of 79–82
density function 116, 117f, 120f, 121f,

139f, 143f, 188, 299–300, 355
distributions 108–10, 110f, 112, 115,

115f, 119, 188, 308t
of either of two events 82–3
frequency 58–9, 63, 80, 108, 197
function 109, 117f, 119
independence 85–9
joint 83–5, 87, 90f, 91, 92f
laws of 82–5
mathematical 79–83, 108–9
posterior 91, 97, 190–1, 197
prior 91, 192–3, 355, 357
relevant 116
sample 23–5
of Type I (Type II) error 190–1, 197

Probability sample 23–5
Proband 27–8, 32

sampling frame 28
Product-moment correlation coefficient

244
Progressively censored data 299
Proportion 55–6, 62, 161–5
Proportional hazards model 300
Prospective study 25–6
Publishing bias 325
p-value 156

Qualitative data, trait 46, 68, 109
Quantitative data, trait 46, 51, 68, 281
Quasi-experimental study 36
q-value 197

Random cluster sample 24
Random effect 270, 273

Randomization 23–5, 29–30, 33–5
Randomization test 304
Randomized blocks design 31, 33,

170, 306
Randomized design 30–1, 33, 267–9,

279, 304–6
Random model 270
Random variable 107–9

continuous 108–9, 114, 116, 119, 188
discrete 108–9, 114, 119

Range 64
Rank correlation coefficient 246
Rank sum test 169, 357
Rate 56, 58
Recessive allele 9, 12, 193
Recessive inheritance 190, 193
Regression 233–42

coefficient 237, 246–7, 252, 359–60
diagnostics 250
linear 234, 239t, 240
logistic 296–9
multiple 246–50, 247t, 252, 293
stepwise 248
toward mean 251–2

Relative measures of disease frequency
58–61

Relative risk 58–60
Reliability of data 6
Repeated measures study 34
Reporting bias 325
Resampling 309–11
Research hypothesis 155–6, 321, 326
Residual (estimated error) 237, 237f, 239,

250, 269, 271
Residual mean square 238, 282
Residual sum of squares 237–8
Residual treatment effect 31
Response variable 33, 108, 209, 235,

293–4
Retrieval bias 325
Retrospective study 25
Robust estimator 135, 310

Sample 5–6
data 5, 23, 155, 169, 176, 265
estimate 133, 161, 310
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Sample (Continued)
estimator 133–5
mean distribution of 138–40
size 322–3
two-stage cluster 25
variance 134–5

Sampling design 25
Sampling fraction 269–71, 278
Scale of measurement 46–7, 62, 322

interval 46, 49, 62, 68, 193
nominal 46–7
ordinal 46, 63, 109

Scatter diagram, plot 52, 53f, 54,
54f, 68

Scheffe’s method, 361
Schizophrenia 27
Scientific method 4–5
Segregation 9
Selection bias 325
Sensitivity 61–4, 84, 167, 175, 193, 220,

294, 322
Sequential design 32
Shape, measures of 67–8
Sib, sibship 10, 27–8
Sidák 196
Signed rank sum test 173–4
Significance test 155–7, 159, 176,

193, 282
Sign test 172–4
Simple effect 275–6, 276f
Simple random sample 23–4, 28
Single nucleotide polymorphism 9
Singly censored data 299
Skewness 67f, 67–8, 205, 354
Slope 235, 237–8, 239t, 240, 244, 246
Smoking and disease 13
SNP 9, 195
Spearman’s rank correlation coefficient

246
Specificity 61–2, 84
Spike and slab 197
Spinner wheel example for uniform

distribution 115f
Split-plot design 31
Spread 64–7, 117–18
Spurious association 216, 224

Standard deviation 64–7
Standard error 132–3, 360

of mean 132–3, 137, 146
Standard normal distribution 120–1,

143f, 203
Standardized random variable 120
Statistical consultation 11
Statistical significance 160, 192
Statistic(s) 11, 21–2, 79, 97, 118, 133,

169, 272, 274, 277, 298, 361
definition of 5–6
descriptive, see Descriptive statistics
reasons for studying 3, 6–8

Stepwise regression 248
Stratification 219, 306
Stratified random sample 23, 28
Strength of evidence for research

hypothesis 97, 192
Study design 11–12, 27, 36, 322
Study objectives 11, 20
Study population 22–3, 27
Study unit 21–3
Sum of squares for regression 238,

247, 360
Survival curve 300–3, 300f
Survival time 299–301
Survivorship function 299–300
Symmetric distribution 67, 68f
Systematic random sample 24

Table 47–8
Target population 21–3, 27
t-distribution 142–4, 143f, 157–9, 158f,

169, 174, 189
TDT 216, 217t, 224
Temporal 10, 55
Test of hypothesis 156–7

chi-square 203, 216, 218–19, 359
criterion 156–7, 167, 174, 176,

356
equality of two means 167–9
equality of two medians 169–72
equality of two variances 165–7
F 167, 240, 247, 247t, 248t, 266–7,

272, 278t, 279, 282–3, 361
Fisher’s exact test 217, 306–9, 308t
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goodness-of-fit 206–9
Hotelling’s 294
Kruskal-Wallis 283
likelihood ratio 221–4, 297
Mann-Whitney 170
Matched pairs t 168
McNemar’s 215–16, 219, 224
one-sided 161, 165, 174, 176–7
paired t 168, 173
permutation 304–9
population mean 157–60
proportion 161–5
randomization 304
rank sum 169, 357
sign 172–4
signed rank sum 173–4
significance 155–7, 159, 176, 193, 282
Student’s t 172–3
two-sided 161, 165–6, 174
Wilcoxon’s 169–70

Training dataset 312
Transformation 117, 277, 279, 281
Transmission disequilibrium test 216,

217t, 224
Tree diagram 54f, 55, 95f
Trio 27, 216
Trisomy 21, 81
Tuberculosis example 13, 55
Tukey’s procedure 361

Two-sample t-test 169, 189
Two-sided test 161, 165–6, 174
Two-stage cluster sample 25
Two-way analysis of variance 277, 278t
Type I error 173
Type II error 173–4

Unbiased estimator 134, 146, 310
Uniform distribution 114–16, 115f, 120f
Univariate analysis 293–4

Validity 172–6
Variability, see Spread
Variable, see Random variable, concomitant

variable, predictor variable, response
variable

Variance 64–6
see also Analysis of variance (ANOVA)

Variant 8, 12, 29–30
Variate 33, 108, 209, 293
Vertical scale 49, 51

Waiting time 13
Washout period 31
Wilcoxon’s test 169–70

X chromosome 8, 88

Y chromosome 8




